matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwerte von Reihen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Grenzwerte" - Grenzwerte von Reihen
Grenzwerte von Reihen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:30 So 03.02.2013
Autor: DragoNru

Aufgabe
[mm] \summe_{n=1}^{\infty} (\bruch{n+1}{n+2} [/mm] - [mm] \bruch{n}{n+1}) [/mm]

Hallo,

Habe ein großes Problem mit Grenzwerten von Reihen. Beschäftige mich erst seid einem tag mit dem Thema. vielleicht könnt ihr mir helfen, das thema zu verstehen :)
die aufgabe lautet, Grenzwerte von reihen.
was ich bis jetzt rausfinden konnte ist: Man muss erstmal nachweisen, das die reihe konvergiert, dazu hat man 5 Konvergenzkriterien, mit denen man konvergenz nachweisen kann. Ich weiss aber nicht, welche man wann benutzt. wie erkennt man das?
und, wie geht man an so eine aufgabe am besten ran. soll man versuchen das n auszuklammern, oder doch lieber die konstanten?

Gruß

        
Bezug
Grenzwerte von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:35 So 03.02.2013
Autor: M.Rex

Hallo


> [mm]\summe_{n=1}^{\infty} (\bruch{n+1}{n+2}[/mm] - [mm]\bruch{n}{n+1})[/mm]
>  Hallo,
>  
> Habe ein großes Problem mit Grenzwerten von Reihen.
> Beschäftige mich erst seid einem tag mit dem Thema.
> vielleicht könnt ihr mir helfen, das thema zu verstehen
> :)
>  die aufgabe lautet, Grenzwerte von reihen.
>  was ich bis jetzt rausfinden konnte ist: Man muss erstmal
> nachweisen, das die reihe konvergiert, dazu hat man 5
> Konvergenzkriterien, mit denen man konvergenz nachweisen
> kann. Ich weiss aber nicht, welche man wann benutzt. wie
> erkennt man das?
>  und, wie geht man an so eine aufgabe am besten ran. soll
> man versuchen das n auszuklammern, oder doch lieber die
> konstanten?

Hier würde ich versuchen, die Brüche zu addieren.

[mm] \frac{n+1}{n+2}-\frac{n}{n+1} [/mm]
[mm] =\frac{(n+1)^{2}}{(n+2)(n-1)}-\frac{n(n+2)}{(n+2)(n+1)} [/mm]
[mm] =\frac{(n+1)^{2}-n(n+2)}{(n+2)(n-1)} [/mm]
[mm] =\frac{n^{2}+2n+1-n^{2}-2n}{(n-1)(n+2)} [/mm]
[mm] =\frac{1}{(n-1)(n+2)} [/mm]

Nun bist du wieder dran, eine Idee zu liefern.

>  
> Gruß

Marius


Bezug
                
Bezug
Grenzwerte von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 So 03.02.2013
Autor: DragoNru

[mm] =\frac{1}{(n-1)(n+2)} [/mm]

vielleicht den nenner ausrechnen

[mm] =\frac{1}{n^2+n-2} [/mm]

nur weiss ich grad nicht, wohin das führen soll. also was ist das ziel?

Bezug
                        
Bezug
Grenzwerte von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 So 03.02.2013
Autor: Diophant

Hallo,

> [mm]=\frac{1}{(n-1)(n+2)}[/mm]
>
> vielleicht den nenner ausrechnen
>
> [mm]=\frac{1}{n^2+n-2}[/mm]
>
> nur weiss ich grad nicht, wohin das führen soll. also was
> ist das ziel?

Das mit dem Ausmultiplizieren ist auf jeden Fall der ganz falsche Weg. Die Reihe ist eine sog. Teleskopsumme, und der Tipp von M.Rex sollte dir dabei helfen, dies zu erkennen.

Wenn man es jedoch erkannt hat, dann benötigt man das ZUsammenfassen auf der anderen Seite auch wieder nicht mehr.

Um zu verstehen, was es mit einer Teleskopsumme auf sich hat, empfiehlt es sich, mal ein paar Reihenglieder hinzuschreiben, indem du für n aufsteigende natürliche Zahlen einsetzt. Mache das aber unbedingt in der ursprünglichen Form, da sieht man es besonders gut.


Gruß, Diophant


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]