matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwerte von Folgen - ?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Grenzwerte" - Grenzwerte von Folgen - ?
Grenzwerte von Folgen - ? < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte von Folgen - ?: Einfach erklärt
Status: (Frage) beantwortet Status 
Datum: 14:34 Mo 16.06.2008
Autor: kathiistgut

Jetzt mal in ganz einfachen Worten: Wie bestimme ich den Grenzwert einer Folge?
Muss ich für n=0 einsetzen?
Vielen Dank schon mal für die Antworten und entschuldigt die blöde Frage^^ ... aber ich steh grad irgendwie auf dem Schlauch
Liebe Grüße aus dem wilden Süden
KATHi

...muss ich das jetzt hier hinschreiben?? "Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt"... verrücktes Forum :-)

        
Bezug
Grenzwerte von Folgen - ?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Mo 16.06.2008
Autor: Steffi21

Hallo, möchtest du den Grenzwert einer konvergenten Folge bestimmen, so solltest du wissen, mit wachsenden Index nähern sich die Glieder einer Folge immer näher einer bestimmten Zahl, dein Grenzwert, an, also [mm] n\to\infty, [/mm] Beispiel: [mm] \limes_{n\rightarrow\infty}\bruch{1}{n}=0, [/mm] du hast ja die Glieder: 1; [mm] \bruch{1}{2}; \bruch{1}{3}; \bruch{1}{4}; [/mm] ...
Steffi

Bezug
                
Bezug
Grenzwerte von Folgen - ?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Mo 16.06.2008
Autor: kathiistgut

Bei deinem Beispiel erscheint es logisch, dass sich die Werte an 0 annähern. Aber zum Beispiel bei der Aufgabe
(100 + [mm] 1/n)^2 [/mm]
soll der Grenzwert 10.000 sein. Kann ich den Grenzwert also ermitteln, indem ich den n-Term nullsetze?

Bezug
                        
Bezug
Grenzwerte von Folgen - ?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Mo 16.06.2008
Autor: angela.h.b.


> Bei deinem Beispiel erscheint es logisch, dass sich die
> Werte an 0 annähern. Aber zum Beispiel bei der Aufgabe
>  (100 + [mm]1/n)^2[/mm]
>  soll der Grenzwert 10.000 sein. Kann ich den Grenzwert
> also ermitteln, indem ich den n-Term nullsetze?

Hallo,

[willkommenmr].

Du möchtest also [mm] \limes_{n\rightarrow\infty} [/mm] (100 + [mm] \bruch{1}{n})^2 [/mm] berechnen.

Für n gegen [mm] \infty [/mm] geht [mm] \bruch{1}{n} [/mm] gegen 0, also geht für n gegen [mm] \infty [/mm]  (100 + [mm] \bruch{1}{n}) [/mm] gegen 100, und folglich ist dann [mm] \limes_{n\rightarrow\infty} [/mm] (100 + [mm] \bruch{1}{n})^2=100^2=10000. [/mm]
(Produkt konvergierender Folgen).

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]