matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwerte über Potzenreihen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Grenzwerte über Potzenreihen
Grenzwerte über Potzenreihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte über Potzenreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:57 So 25.10.2009
Autor: kushkush

Aufgabe
Berechne folgende Grenzwerte mit Hilfe geeigneter Potenzreihenentwicklung:

1. [mm] $\limes_{x\rightarrow\ 0} \frac{sin(x)}{x} [/mm]

2. [mm] $\limes_{x\rightarrow\ 0}\frac{e^{x}-1}{x} [/mm]

Guten Abend,


habe beide in Taylorreihen verwandelt:

1) [mm] 1-\frac{x^2}{3!}+\frac{x^{4}}{6!}-\frac{x^{6}}{7!} [/mm]

und bei

2) [mm] 1+\frac{x}{2}+\frac{x^2}{6}+\frac{x^3}{24}+\frac{x^4}{120} [/mm]


Doch wie finde nun die Grenzwerte heraus?



Ich habe diese Frage in keinem anderen Forum gestellt und bin für jede Antwort dankbar.

        
Bezug
Grenzwerte über Potzenreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:05 So 25.10.2009
Autor: leduart

Hallo
ich hoffe, du hast Zaehler und Nenner einzeln entwickelt und fuer [mm] x\ne0 [/mm] gekuerzt.
Dann bist du fertig, denn eigentlich weisst du dass du jetzt  ja einfach x=0 einstzen kannst. wenns dir lieber ist fuer ale n>0 ist [mm] 0^n=0 [/mm]
War wohl einfach zu einfach [grins]
Gruss leduart

Bezug
                
Bezug
Grenzwerte über Potzenreihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:14 So 25.10.2009
Autor: kushkush

Hi leduart,



einsetzen stimmt,


dankeschön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]