matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisGrenzwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Grenzwerte
Grenzwerte < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte: Epsilonumgebung
Status: (Frage) beantwortet Status 
Datum: 18:30 Do 27.10.2005
Autor: Uwe_weU

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi!
Ich habe folgendes Problem. Ich kann es einfach nicht kappieren, wie das mit der Epsilonumgebung gemeint ist...
Also:
In der Vorlesung haben wir uns folgendes aufgeschrieben:
[mm] \forall \varepsilon [/mm] > 0 [mm] \exists n_{0} \in \IN \forall [/mm] n [mm] \in \IN [/mm] : n [mm] \ge n_{0} [/mm]
und weiter
[mm] |a_n [/mm] - a|< [mm] \varepsilon \gdw a-\varepsilon \le a_n \le a+\varepsilon [/mm]
In einem Beitrag etwas eher, wurde das schonmal ganz gut erklärt, dass ja [mm] n_0 [/mm] das Glied der Zahlenfolge ist, ab dem alle anderen Glieder, die größer sind in dieser Epsilonumgebung liegen.
Und JETZT mein großes Problem:
WIE WENDET MAN DAS AN???????
Meine Beispielaufgabe:

[mm] a_n [/mm] = [mm] 1-(-1)^{n}*\bruch{1}{n} [/mm]

entscheide, ob es eine Nullfolge ist!
Natürlich nicht, weil durch Probieren und einsetzten verschiedener Zahlen (1,2,3,10,100,1000,10000) ergibt sich näherungsweise [mm] lim_n\to \infty [/mm] = 1
Wie zeige ich das?
Mein Lösungsvorschlag:
ich nehme an, dass a=0 ist, somit ergibt sich
[mm] |a_n-a|<\varepsilon [/mm] also
[mm] |a_n|<\varepsilon [/mm]
[mm] \varepsilon [/mm] muss jetzt > 0 gewählt werden (klar, weil Epsilonumgebung)

UND WEITER????? Ich kann mir den nächsten schritt nicht erklären???
Bitte helft mir, ich bin schon so weit alleine gekommen...jetzt darf das nicht einreissen ;-)
DANKE!!!!
Uwe

        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Do 27.10.2005
Autor: leduart

Hallo Uwe

                       [willkommenmr]


>>  In der Vorlesung haben wir uns folgendes aufgeschrieben:

>  [mm]\forall \varepsilon[/mm] > 0 [mm]\exists n_{0} \in \IN \forall[/mm] n

> [mm]\in \IN[/mm] : n [mm]\ge n_{0}[/mm]
>  und weiter
>  [mm]|a_n[/mm] - a|< [mm]\varepsilon \gdw a-\varepsilon \le a_n \le a+\varepsilon[/mm]
>  
> In einem Beitrag etwas eher, wurde das schonmal ganz gut
> erklärt, dass ja [mm]n_0[/mm] das Glied der Zahlenfolge ist, ab dem
> alle anderen Glieder, die größer sind in dieser
> Epsilonumgebung liegen.
>  Und JETZT mein großes Problem:
>  WIE WENDET MAN DAS AN???????
>  Meine Beispielaufgabe:
>  
> [mm]a_n[/mm] = [mm]1-(-1)^{n}*\bruch{1}{n}[/mm]
>  
> entscheide, ob es eine Nullfolge ist!
>  Natürlich nicht, weil durch Probieren und einsetzten
> verschiedener Zahlen (1,2,3,10,100,1000,10000) ergibt sich
> näherungsweise [mm]lim_n\to \infty[/mm] = 1
>  Wie zeige ich das?
>  Mein Lösungsvorschlag:
>  ich nehme an, dass a=0 ist, somit ergibt sich
>  [mm]|a_n-a|<\varepsilon[/mm] also
>  [mm]|a_n|<\varepsilon[/mm]
>  [mm]\varepsilon[/mm] muss jetzt > 0 gewählt werden (klar, weil

> Epsilonumgebung)

2 Möglichkeiten: du gibst ein [mm] N_{0} [/mm] an ab dem für alle [mm] \varepsilon [/mm] <0.5 (oder irgend ein anderer fester Wert) alle an AUSSERHALB de intervalls liegen , hier zeigst du also, dass |an|>0.5 ab n=3 .
Oder du zeigst, dass an den  Grenzwert 1 hat. [mm] N_{0} [/mm] so bestimmen, dass [mm] |an-1|<\varepsilon [/mm] . dann ist es natürlich auch keine Nullfolge.
Gruss leduart.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]