matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisGrenzwertbestimmung von Reihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Grenzwertbestimmung von Reihen
Grenzwertbestimmung von Reihen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertbestimmung von Reihen: Wert eine Reihe
Status: (Frage) beantwortet Status 
Datum: 19:34 Mo 12.09.2005
Autor: Mr.Peanut

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Bekomme es nicht hin:

Bestimmen sie das Konvergenzverhalten der folgenden Reihe und bestimmen Sie Gegebenenfalls den Grenzwert:


[mm] \summe_{i=1}^{\infty} \bruch{1}{n}-\bruch{1}{n+4} [/mm]



Konvergenzverhalten bekomme ich hin aber wie bekommt man den Grenzwert heraus?
schon mal danke im vorraus

        
Bezug
Grenzwertbestimmung von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Mo 12.09.2005
Autor: Teletubyyy

Hallo Mr. Peanut,

Die Aufgabe ist vermutlich deutlich leichter als du denkst. Wenn du die Reihe mal ausführlich aufschreibst, erklährt sich die Lösung von selbst:

[mm] \summe_{i=1}^{\infty} \bruch{1}{n}-\bruch{1}{n+4} =1-\frac{1}{5}+\frac{1}{2}-\frac{1}{6}+\frac{1}{3}-\frac{1}{7}+\frac{1}{4}-\frac{1}{8}+\frac{1}{5}-\frac{1}{9}+\frac{1}{6}-\frac{1}{10}+\frac{1}{7}-+..[/mm]

Wie man jetzt relativ leicht erkennt, gilt für die Folge der Teilsummen [mm] s_n [/mm] (Das sollte man aber trotzdem am besten noch durch Induktion beweisen):
[mm]s_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\left(\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\frac{1}{n+4}\right)[/mm]

Somit strebt offensichtlich die Folge Der Teilsummen gegen 25/12.


Gruß Samuel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]