matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisGrenzwertbestimmung - Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Grenzwertbestimmung - Funktion
Grenzwertbestimmung - Funktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertbestimmung - Funktion: Probleme mit Parametern
Status: (Frage) beantwortet Status 
Datum: 14:51 Mi 09.03.2005
Autor: Samoth

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich habe Probleme folgende Aufgabe zu lösen:

Bestimmen sie die Parameter [mm] \alpha , \beta \in\IR [/mm] so, daß

[mm] \lim_{n \to 0} \bruch{x^4}{\alpha\,(\sin x)^2 + x^2 + \beta\,(1 - \cos x)} &=& 1 [/mm]

Da Zähler und Nenner für n -> 0 gegen 0 streben, war mein Ansatz erst mal es mit l'Hospital zu versuchen.

dann erhalte ich:

[mm] \lim_{n \to 0} \bruch{4x^3}{2\alpha\,(\sin x) (\cos x) + 2x + \beta\, \sin x)} &=& 1 [/mm]

und noch mal l'Hospital:

[mm] \lim_{n \to 0} \bruch{12x^2}{2\alpha\,((\cos x)^2 - (\sin x)^2) + 2 + \beta\,\cos x)} &=& 1 [/mm]

...jetzt kann ich aber immer noch nicht sehen wie die Parameter gewählt werden sollen, damit der Grenzwert 1 ist.
Meiner Ansicht nach, ist der Grenzwert immer 0, egal wie man die Parameter wählt.

Habe ich irgendwas übersehen, oder ist der Ansatz falsch?
Ich wäre dankbar für jeden Hinweis...  


        
Bezug
Grenzwertbestimmung - Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:12 Mi 09.03.2005
Autor: Hanno

Hallo!

Die Idee, die Regel von L'Hospital anzuwenden, scheint vielversprechend. Schauen wir uns dein Ergebnis mal an:

$ [mm] \lim_{n \to 0} \bruch{12x^2}{2\alpha\,((\cos x)^2 - (\sin x)^2) + 2 + \beta\,\cos x)} [/mm] &=& 1 $

Für $x=0$ ist der Zähler 0, der Nenner im Allgemeinen aber nicht - Widerspruch. Der Nenner muss Null sein, damit der Grenzwert überhaupt noch 1 sein kann. Folglich muss [mm] $2\alpha+2+\beta=0\gdw \beta=-2(\alpha+1)$ [/mm] gelten. Setzt du dies ein, kannst du die Regel von L'Hospital abermals anwenden und erhältst:

$ = [mm] \lim_{x\to 0} \frac{12x^2}{2\alpha( cos^2(x)-sin^2(x))+2-2(\alpha +1) cos(x)}$ [/mm]
$ = [mm] \lim_{x\to 0} \frac{24x}{-8\alpha sin(x)\cdot cos(x))+2(\alpha+1)sin(x)}$ [/mm]
$ = [mm] \lim_{x\to 0} \frac{24}{-8\alpha (cos^2 (x)-sin^2 (x))+2(\alpha +1)cos(x)}$ [/mm]
$ = [mm] \frac{24}{-8\alpha+2\alpha+2}=\frac{24}{-6\alpha +2}$ [/mm]

Daraus folgt [mm] $\alpha=-\frac{11}{3}$ [/mm] und [mm] $\beta =\frac{22}{3}-2=\frac{16}{3}$. [/mm]


Liebe Grüße,
Hanno

Bezug
                
Bezug
Grenzwertbestimmung - Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:27 Mi 09.03.2005
Autor: Samoth

Hallo Hanno!

Ich danke dir für deine schnelle Antwort.
Ich habe mal wieder den Wald vor lauter Bäumen nicht gesehen.... :(

Grüße,
Samoth

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]