matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwertbestimmung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Grenzwertbestimmung
Grenzwertbestimmung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertbestimmung: Idee
Status: (Frage) beantwortet Status 
Datum: 19:00 Mi 26.05.2010
Autor: Blaub33r3

Aufgabe
Bestimmen Sie [mm] \limes_{n\rightarrow\infty}\bruch{a_{n+1}}{a_{n}} [/mm]

[mm] a_{n}=\bruch{(n!)^{3}}{(3n)!} [/mm]

Hey Leute,

[mm] a_{n}=\bruch{(n!)^{3}}{(3n)!} [/mm]

[mm] a_{n+1}=\bruch{((n+1)!)^{3}}{(3n+3)!} [/mm]

[mm] \bruch{a_{n+1}}{a_{n}}=a_{n+1}*\bruch{1}{a_{n}} [/mm]

Nun setze ich das Gegebene in die Formel ein und bekomme:

[mm] \bruch{((n+1)!)^{3}}{(3n+3)!}*\bruch{(3n)!}{(n!)^{3}} [/mm]

Wie kann ich diesen Term nun sinnvoll kürzen um zu einen Grenzwert zukommen?

Ein Versuch von mir, verlief so:

[mm] (\bruch{(n+1)!}{n!})^3*\bruch{(3n)!}{(3n+3)!}=(\bruch{n!*(n+1)}{n!})^3*\bruch{(3n)!}{(3n)!*(3n+1)*(3n+2)*(3n+3)}=(n+1)^3*\bruch{1}{(3n+1)*(3n+2)*(3n+3)} [/mm]

[mm] \bruch{(n+1)^3}{(3n+1)*(3n+2)*(3n+3)}=\bruch{n^3+3n^2+3n+1}{27n^3+54n^2+33n+6}=\bruch{n^3(1+\bruch{3}{n}+\bruch{3}{n^2}+\bruch{1}{n^3})}{n^3(27+\bruch{54}{n}+\bruch{33}{n^2}+\bruch{6}{n^3})}=\limes_{n\rightarrow\infty}\bruch{1+\bruch{3}{n}+\bruch{3}{n^2}+\bruch{1}{n^3}}{27+\bruch{54}{n}+\bruch{33}{n^2}+\bruch{6}{n^3}}=\bruch{1}{27} [/mm]

Also konvergiert [mm] a_{n} [/mm] gegen den Grenzwert von [mm] \bruch{1}{27} [/mm]

Grüße, die Beere

        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Mi 26.05.2010
Autor: leduart

Hallo
schreib doch auch (3n+3)!=(3n)!*.....
Das musst du doch können!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]