matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwertbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Grenzwertbestimmung
Grenzwertbestimmung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertbestimmung: Lösungsweg
Status: (Frage) beantwortet Status 
Datum: 10:02 Fr 07.07.2006
Autor: TAL

Hallo,

Aufgabe
Berechnen Sie den Grenzwert:

[mm]\limes_{x \to \ 0}\bruch{cosx+e^\Bruch{-x^2*0.5}}{x^4}[/mm]


Kann mir jemand sagen wie man diesen grenzwert bestimmt.

MFG TAL

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Fr 07.07.2006
Autor: stevarino

Hallo,
>  
> Berechnen Sie den Grenzwert:
>  
> [mm]\limes_{x \to \ 0}\bruch{cosx+e^\Bruch{-x^2*0.5}}{x^4}[/mm]
>  
> Kann mir jemand sagen wie man diesen grenzwert bestimmt.

also ich würde das so probieren
[mm] \limes_{x \to \ 0}\bruch{cosx+e^\Bruch{-x^2*0.5}}{x^4} [/mm] wenn man das so  auswertet würde" [mm] \limes_{x \to \ 0}\bruch{1}{0} [/mm] " hierstehen

damit man die Regel von Del Hospital anwenden darf muss aber entweder
[mm] \limes_{x \to \ 0}\bruch{0}{0} [/mm]  oder [mm] \limes_{x \to \ 0}\bruch{ \pm \infty}{ \pm \infty} [/mm] hierstehen

also muss man einen kleinen Trick anwenden und zwar in dem man Zähler und Nenner mit [mm] cosx-e^\Bruch{-x^2*0.5} [/mm] erweitert
[mm] \limes_{x \to \ 0}\bruch{cosx+e^\Bruch{-x^2*0.5}}{x^4}*\bruch{cosx-e^\Bruch{-x^2*0.5}}{cosx-e^\Bruch{-x^2*0.5}} [/mm]

[mm] \limes_{x \to \ 0}\bruch{cos^{2}x-e^{-x^2}}{x^4*(cosx-e^\Bruch{-x^2*0,5})} [/mm]

jetzt kannst du Del Hospital anwenden...
Ich habs zwar nicht durchgerechnet aber so müßte es funktionieren

lg Stevo


Bezug
                
Bezug
Grenzwertbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:29 Fr 07.07.2006
Autor: mathemaduenn

Hallo Stevo,
> also ich würde das so probieren
>  [mm]\limes_{x \to \ 0}\bruch{cosx+e^\Bruch{-x^2*0.5}}{x^4}[/mm]
> wenn man das so  auswertet würde" [mm]\limes_{x \to \ 0}\bruch{1}{0}[/mm]
> " hierstehen

In diesem Fall ist doch schon alles klar der GW existiert nicht bzw. ist unendlich.
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]