matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGrenzwertbest. von Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Grenzwertbest. von Funktionen
Grenzwertbest. von Funktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertbest. von Funktionen: "Aufgaben"
Status: (Frage) beantwortet Status 
Datum: 09:13 Mo 29.05.2006
Autor: Dani1987

Aufgabe
lim       (x³+3x²-24x-80) : (x³-3x²-16x+48)
x->-4

Hallo zusammen,


ich habe eine Frage zu dieser Aufgabe. Hier soll der Grenzwert bestimmt werden. Da man beim einsetzen von x=-4 in die Gleichung 0/0 erhält, kann man l'hospital anwenden. Das heißt ich benötige die erste Ableitung der Funktion, die mithilfe der Quotientenregel zu bewältigen ist.
Das wäre ein ganz schöner Zahlensalat, der da zusammenkommt.

Kann man die Aufagbe auch auf einem einfacheren Weg lösen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwertbest. von Funktionen: keine Quotientenregel
Status: (Antwort) fertig Status 
Datum: 11:00 Mo 29.05.2006
Autor: Loddar

Hallo Dani,

[willkommenmr] !!


[aufgemerkt] Die Grenzwertbestimmung mit den MBGrenzwertsätzen nach de l'Hospital hat nichts mit der üblichen Ableitung der zu untersuchenden Funktion zu tun.

Diese entsprechenden Regeln gelten lediglich für die Grenzwertbetrachtung, wenn einer der Fälle [mm] $\bruch{0}{0}$ [/mm] bzw. [mm] $\pm [/mm] \ [mm] \bruch{\infty}{\infty}$ [/mm] auftritt.


Bei de l'Hospital brauchst Du lediglich den Zähler und den Nenner jeweils getrennt für sich ableiten und dann den Grenzwert bestimmen.


Gruß
Loddar


Bezug
                
Bezug
Grenzwertbest. von Funktionen: "Rückfrage"
Status: (Frage) beantwortet Status 
Datum: 16:28 Mo 29.05.2006
Autor: Dani1987

Aufgabe
lim       (x³+3x²-24x-80) : (x³-3x²-16x+48)
x->-4  

Vielen Dank für die Hilfe!!!

Also, rechne ich diese Aufgabe nach l'Hospital und bilde beide Ableitung seperat, so erhalte ich die Gleichung:

lim       (3x²+6x-24) : (3x²-6x-16)
x->-4

setze ich nun x=-4 in die Gleichung ein, erhalte 0/56, also 0.



Ist 0 dann mein Grenzwert? Ist die Aufgabe jetzt überhaupt richtig gerechnet?

Bezug
                        
Bezug
Grenzwertbest. von Funktionen: Stimmt so!
Status: (Antwort) fertig Status 
Datum: 16:46 Mo 29.05.2006
Autor: Loddar

Hallo Dani!


> setze ich nun x=-4 in die Gleichung ein, erhalte 0/56, also 0.
>
> Ist 0 dann mein Grenzwert? Ist die Aufgabe jetzt überhaupt
> richtig gerechnet?

[daumenhoch] Alles richtig so!


Gruß
Loddar


Bezug
                        
Bezug
Grenzwertbest. von Funktionen: "Aufgaben"
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:08 Mo 29.05.2006
Autor: Dani1987

Aufgabe
  [mm] \limes_{n\rightarrow\infty} 3^{(-1)^n+1} [/mm]

Hey,

vielen Dank, du hast schon super geholfen, ohne dich wär ich echt aufgeschmissen gewesen!!!

Ich hab noch ein weiteres Problem, bei dem ich nicht genau weiß was ich machen muss. Und zwar die obige Aufgabe.
Dort gehört allerdings die +1 hinter dem n noch mit in den exponenten!!!
Also ich meine da muss man was mit innerer und äußerer Ableitung machen. Die äußere Ableitung wär ja 3x, oder? aber bei der inneren weiß ich nicht weiter, da verwirrt mich das    ^n+1.

Und wie sieht das aus wenn ich eine Differenz von Wurzeln mit vorgegebenem Limes gegeben habe (limx -> 5) habe?
Muss ich dort einfach nu rden Wert für x ein setzten oder auch die Ableitungen bilden?
Ich habe die Aufgabe gerechnet indem ich die höchste Potenz, in meinem Fall x² ausgeklammert habe. Dann gehen die Brüche auf jeden fall gegen null und ich muss nur noch die ganzen Zahlen betrachten und aus ihnen die Wurzel ziehen und erhalte dann den Grenzwert.
Stimmt das so?

Bezug
                                
Bezug
Grenzwertbest. von Funktionen: Querverweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:16 Mo 29.05.2006
Autor: Loddar

Hallo Dani!


[guckstduhier] .  .  .  .  https://matheraum.de/read?t=155383


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]