matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwertbest. einer Folge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Grenzwertbest. einer Folge
Grenzwertbest. einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertbest. einer Folge: Frage, Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 17:19 Fr 17.12.2004
Autor: Wings

Hallo Liebe Community, in meinem wöchentlichen Matheblatt bin ich in einer Rechnung auf Folgendes Problem gestoßen - Um die Konvergenz einer Folge zu beweisen muss ich unter anderem zeigen, dass

lim für n->unendl.   von  [mm] (n^3 [/mm] * n! * n!) / 2n!  gegen Null geht -

hat jemand vielleicht eine Ahnung oder einen Ansatz, wie man das angeht?

Anm: Hier noch mal die ganze Aufgabe, vielleicht liege ich ja jetzt schon falsch!
Die Folge (an) sei gegeben durch

an = 1 + [mm] n^3 [/mm] / [mm] \vektor{2n \\ n} [/mm]

Zeigen Sie  [mm] \limes_{n\rightarrow\infty} a_{n} [/mm] = 1 und bestimmen Sie fuer  [mm] \varepsilon:=1000^-1 [/mm] ein  [mm] n_{0} [/mm] mit [mm] |a_{n} [/mm] -1|< [mm] \varepsilon [/mm] für [mm] n=>n_{0}. [/mm]


Es würde mir sehr weiterhelfen und bedanke mich allerherzlichst für jede Hilfestellung im Voraus.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Grenzwertbest. einer Folge: Vorgehensweise
Status: (Antwort) fertig Status 
Datum: 22:25 Fr 17.12.2004
Autor: MathePower

Hallo,

zunächst ist das Reihenglied ausführlich hinzuschreiben:

[mm] $$ a_n \; = \;1\; + \;{{n^3 } \over {\left( {\matrix{{2n} \cr n \cr } } \right)}} = \;1\; + \;{{n^3 \;n!\;n!} \over {\left( {2n} \right)!}} = \;1\; + \;n^3 \;{{\prod\limits_{i\; = \;1}^n {i!} \;\prod\limits_{i\; = \;1}^n {i!} } \over {\prod\limits_{i\; = \;1}^{2n} {i!} }} $$ [/mm]

Nun trifft man fuer die Reihe eine Abschätzung nach oben:

[mm] $$ a_n \; = \;1\; + \;n^3 \;{{\prod\limits_{i\; = \;1}^n {i!} \;\prod\limits_{i\; = \;1}^n {i!} } \over {\prod\limits_{i\; = \;1}^{2n} {i!} }}\; \le \;1\; + \;{{n^3 } \over {2^n }}$$ [/mm]

und es gilt:

[mm] $$ \mathop {\lim }\limits_{n \to \infty } \;{{n^3 } \over {2^n }}\; = \;0$$[/mm]

Ab einem bestimmten n ist der Nenner größer als der Zähler.
Somit geht der Limes gegen 0 und das Reihenglied gegen 1.

Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]