matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenGrenzwertberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Grenzwertberechnung
Grenzwertberechnung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Mi 11.05.2011
Autor: Parkan

Aufgabe
[mm]f(n)=\begin{cases} 1, & \mbox{falls } x= \bruch{1}{n} \mbox{ fuer ein n element \IN} \\ x, & \mbox{sonst } \mbox{} \end{cases}[/mm]
[mm][/mm]
Geben Sie die folgenden Grenzwerte ein.
1. f(x)= [mm]\limes_{x\rightarrow 0} [/mm]
2. f(x) = [mm]\limes_{x\rightarrow 1} [/mm]
3. f(x) = [mm]\limes_{x\rightarrow \bruch{1}{2}} [/mm]

An welchen Stellen ist f(x) unstetig?


Hallo
Ich habe bei
1) 0
2) 1
3) 1

Unstetig ist f an allen Stellen wo x ungleich [mm]\bruch{1}{n}[/mm] mit ausname x=1.

Ist irgendwas richtig?

Danke für Eure Hilfe
Janina


        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Mi 11.05.2011
Autor: rainerS

Hallo Janina!

> [mm]f(n)=\begin{cases} 1, & \mbox{falls } x= \bruch{1}{n} \mbox{ fuer ein n element \IN} \\ x, & \mbox{sonst } \mbox{} \end{cases}[/mm]
> [mm][/mm]
>  
> Geben Sie die folgenden Grenzwerte ein.
>  1. f(x)= [mm]\limes_{x\rightarrow 0}[/mm]
>  2. f(x) =
> [mm]\limes_{x\rightarrow 1}[/mm]
>  3. f(x) = [mm]\limes_{x\rightarrow \bruch{1}{2}}[/mm]
>  
> An welchen Stellen ist f(x) unstetig?
>  
> Hallo
>  Ich habe bei
> 1) 0

[notok]

>  2) 1

[ok]

>  3) 1

[notok]

> Unstetig ist f an allen Stellen wo x ungleich [mm]\bruch{1}{n}[/mm]
> mit ausname x=1.

[ok]

Erklärung:
Die Kurve von f ist bis auf die Unstetigkeitsstellen die Gerade $y=x$.

Bei x=1 ist f stetig, also ist der Grenzwert gleich $f(1)=1$.

Aber bei $x=1/2$ ist f unstetig. $f(1/2)=1$, aber wenn ich mich von rechts oder links an den Wert $x=1/2$ annähere, dann nähert sich $f(x)$ an den Wert $1/2$ an, daher ist [mm] $\limes_{x\rightarrow \bruch{1}{2}}f(x)= \bruch{1}{2}$. [/mm]

Der schwierigste Teil ist die Frage nach [mm]\limes_{x\rightarrow 0} f(x)[/mm]. Bedenke, dass an jedem x der Form [mm] $\bruch{1}{n}$ [/mm] die Funktion den Wert 1 hat. Wenn du dich also von positiven x her der Null näherst, wird f(x) immer kleiner, außer an diesen Unstetigkeitsstellen, an denen der Funktionswert auf 1 springt. Kann also dieser Grenzwert überhaupt sinnvoll angegeben werden?

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]