matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwertberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Grenzwerte" - Grenzwertberechnung
Grenzwertberechnung < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:37 Mi 29.12.2010
Autor: LuisA44

Aufgabe
Bestimmen Sie folgende Grenzwerte:

a.) [mm] \limes_{x\rightarrow0}x*cot(x) [/mm]

b.) [mm] \limes_{x\downarrow \bruch{\pi}{2}}(tan(x)+ \bruch{1}{x-\bruch{\pi}{2}}) [/mm]

c.) [mm] \limes_{x\rightarrow\infty}\bruch{sin(x)+2x}{cos(x)+2x} [/mm]

d.) [mm] \limes_{x\uparrow 0}\bruch{x-cos(x)}{x+sin(x)} [/mm]

Hallo zusammen,

bin grad in der Klausurvorbereitung und Grenzwerte sind bisher noch nicht meine Freunde geworden.
HAbe mich mal an oben stehenden versucht und wäre sehr erfreut, wenn mal jemand drüberschauen und mir sagen könnte, ob das alles so geht, was ich da mache :-)
Zunächst habe ich folgendes zur a.) und c.) heraus bekommen:
zu a.)
[mm] \limes_{x\rightarrow0}x*cot(x)= \limes_{x\rightarrow0}x*\bruch{cos(x)}{sin(x)} [/mm]

Wegen [mm] \limes_{x\rightarrow0}x*cos(x)=0 [/mm] und

[mm] \limes_{x\rightarrow0}sin(x)=0 [/mm] darf der Satz von l'Hospital angewendet werden.
Also
[mm] \limes_{x\rightarrow0}\bruch{x*cos(x)}{sin(x)} [/mm]

= [mm] \limes_{x\rightarrow0}\bruch{cos(x)-x*sin(x)}{cos(x)} [/mm]

= 1

zu c.)
[mm] \limes_{x\rightarrow\infty}\bruch{sin(x)+2x}{cos(x)+2x} [/mm]

= [mm] \limes_{x\rightarrow\infty}\bruch{sin(x)}{cos(x)+2x}+ \bruch{2x}{cos(x)+2x} [/mm]

= [mm] \limes_{x\rightarrow\infty}\bruch{sin(x)}{cos(x)+2x}+ \bruch{1}{\bruch{cos(x)}{2x}+1} [/mm]

= [mm] \limes_{x\rightarrow\infty}\bruch{sin(x)}{cos(x)+2x}+\limes_{x\rightarrow\infty}\bruch{1}{\bruch{cos(x)}{2x}+1} [/mm]

= 0 + 1 = 1

Über jede Hilfe bin ich sehr dankbar!

Liebe Grüße
LuisA44


        
Bezug
Grenzwertberechnung: zu Aufgabe a.)
Status: (Antwort) fertig Status 
Datum: 14:42 Mi 29.12.2010
Autor: Roadrunner

Hallo LuisA!


Das kann man so machen wie Du. Etwas einfacher geht es, wenn man den bekannten(?) Grenzwert [mm] $\limes_{x\rightarrow 0}\bruch{\sin(x)}{x} [/mm] \ = \ 1$ verwendet:

[mm] $$\limes_{x\rightarrow 0}x*\cot(x) [/mm] \ = \ [mm] \limes_{x\rightarrow 0}x*\bruch{\cos(x)}{\sin(x)} [/mm] \ = \ [mm] \limes_{x\rightarrow 0}\cos(x)*\bruch{x}{\sin(x)} [/mm] \ = \ [mm] \bruch{\limes_{x\rightarrow 0}\cos(x)}{\limes_{x\rightarrow 0}\bruch{\sin(x)}{x}} [/mm] \ = \ ...$$

Gruß vom
Roadrunner

Bezug
        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Mi 29.12.2010
Autor: leduart

Hallo
c) ist zwar richtig, aber di 2 einzelnen GW hast du ja nicht begründet. deshalb kann man wegen der Beschränktheit von sinx und cosx  die du für die begründung brauchst auch gleich den GW. 1 hinschreiben und begründen.
Gruss leduart


Bezug
                
Bezug
Grenzwertberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:33 Do 30.12.2010
Autor: LuisA44

Hi,
vielen Dank für eure Antworten. Dann werde ich mal versuchen bei der anderen Aufgaben weiterzukommen...die fallen mir etwas schwerer. Bis dahin...

Liebe Grüße
LuisA44

Bezug
        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Do 30.12.2010
Autor: weightgainer


> Bestimmen Sie folgende Grenzwerte:
>  
> a.) [mm]\limes_{x\rightarrow0}x*cot(x)[/mm]

Richtig, geht einfach mit L'Hospital (wie geschehen).

>  
> b.) [mm]\limes_{x\downarrow \bruch{\pi}{2}}(tan(x)+ \bruch{1}{x-\bruch{\pi}{2}})[/mm]
>  

Hier kannst du x - [mm] \bruch{\pi}{2} [/mm] ausklammern, bei einem Teilterm musst du dann wieder L'Hospital benutzen, der Rest ist sofort erledigt. Allerdings bist du dann nicht fertig, sondern hast wieder die Voraussetzungen von L'Hospital auf den kompletten Bruch, die Ableitung ist dann zwar nicht schön, führt aber zum Ziel 0 :-).

> c.)
> [mm]\limes_{x\rightarrow\infty}\bruch{sin(x)+2x}{cos(x)+2x}[/mm]

Hier kannst du einfach x ausklammern, dann sieht man den angesprochenen Nutzen der Beschränktheit von Sin/Cos ganz gut.

>  
> d.) [mm]\limes_{x\uparrow 0}\bruch{x-cos(x)}{x+sin(x)}[/mm]

Hier kannst du auch wieder ein x ausklammern, dann steht irgendwo in dem Term noch [mm] \bruch{sin(x)}{x}, [/mm] dessen Grenzwert du wieder per L'Hospital bestimmen kannst. Dann stehen lauter beschränkte Teile drin außer einem - und der haut ganz schön ab, d.h. der Grenzwert existiert nicht.

>  Hallo
> zusammen,
>  
> bin grad in der Klausurvorbereitung und Grenzwerte sind
> bisher noch nicht meine Freunde geworden.

Jetzt kuschelt ihr bestimmt schon miteinander :-).

> Über jede Hilfe bin ich sehr dankbar!
>  
> Liebe Grüße
>  LuisA44
>  

lg weightgainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]