matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieGrenzwert über Riem. Summe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - Grenzwert über Riem. Summe
Grenzwert über Riem. Summe < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert über Riem. Summe: Korrektur, Idee, Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:25 Do 28.04.2016
Autor: Struppi21

Aufgabe
Berechnen Sie den folgenden Grenzwert mit Hilfe Riemannscher Summe:

[mm] \limes_{n\rightarrow\infty} \produkt_{k=1}^{n}(1+\bruch{k}{n})^{\bruch{1}{n}} [/mm]


Hallo,
ich bin mir nicht ganz sicher mit meiner Lösung und daher wäre es sehr nett, wenn jmd auf möglichen Unfug hinweisen könnte :).

Erst muss ich das Produkt in ne Summe umformen, das habe ich mittels ln versucht:

Also, sei: [mm] Pn:=\produkt_{k=1}^{n}(1+\bruch{k}{n})^{\bruch{1}{n}} [/mm]
[mm] \Rightarrow [/mm] ln(Pn) = [mm] ln(\produkt_{k=1}^{n}(1+\bruch{k}{n})^{\bruch{1}{n}}) [/mm]
= [mm] \summe_{k=1}^{n} ln((1+\bruch{k}{n})^{\bruch{1}{n}}) [/mm]
= 1/n * [mm] \summe_{k=1}^{n} ln(1+\bruch{k}{n}) [/mm]

Ich weiss nun also:
[mm] \limes_{n\rightarrow\infty} [/mm] ln(Pn) = [mm] \integral_{0}^{1}{ln(x+1) dx} [/mm]

Das krieg ich mittel partieller Integration zu:
[x*ln(x+1)] - [mm] \integral_{0}^{1}{\bruch{x}{x+1} dx} [/mm]
= [x*ln(x+1)] - [mm] \integral_{0}^{1}{1 dx} [/mm] + x*ln(x+1)] - [mm] \integral_{0}^{1}{\bruch{1}{x+1} dx} [/mm]
= [x*ln(x+1)]  - [x] - [ln(x+1)]

mit Grenzen 0 und 1 er gibt das:
2ln(2) - 1 und somit

[mm] \limes_{n\rightarrow\infty} [/mm] Pn = [mm] e^{2ln(2)-1} [/mm] = 4/e.


        
Bezug
Grenzwert über Riem. Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Do 28.04.2016
Autor: Leopold_Gast

Der Weg stimmt, das Ergebnis auch. Zwischendrin gibt es aber ein kleines Durcheinander mit den Vorzeichen, und du vermischst auch bestimmte und unbestimmte Integrale. Entweder das eine oder das andere. Wie du dann mit den falschen Vorzeichen auf das richtige Ergebnis kommst, weiß ich nicht.
Für die partielle Integration nimmt man beim Integrieren der Konstanten 1 statt x besser x+1. Das geht schneller.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]