matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwert einer Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Grenzwerte" - Grenzwert einer Reihe
Grenzwert einer Reihe < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert einer Reihe: Grenzwert-Reihe-log
Status: (Frage) beantwortet Status 
Datum: 18:48 Mo 22.01.2018
Autor: MRsense

Guten Abend, hab folgende Aufgaben gegen.
Entscheiden Sie, ob die Reihe konvergent ist:

[mm] \summe_{k=2}^{n} \bruch{log(k)}{k^2} [/mm]

Meine Idee war: [mm] \bruch{log(k}{k}*\bruch{1}{k} [/mm]



Liebe Grüße
MRsense

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwert einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:59 Mo 22.01.2018
Autor: MRsense

Ich meinte hier, dass ich zeigen soll, dass [mm] \bruch{log(k)}{k}>1, [/mm] dann ist 1/k eine Minorante????

Bezug
                
Bezug
Grenzwert einer Reihe: Aberwitziger Irrweg!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:13 Mo 22.01.2018
Autor: Diophant

Hallo,

> Ich meinte hier, dass ich zeigen soll, dass
> [mm]\bruch{log(k)}{k}>1,[/mm] dann ist 1/k eine Minorante????

Wie soll denn das zugehen? Offensichtlich mangelt es dir an Kenntnissen der Logarithmusfunktion, sonst kann man auf eine so aberwitzig falsche Idee nicht kommen.

Zeichne mal die Funktionen f(x)=log(x) und g(x)=x mit einem Funktionenplotter, dann siehst du, was ich meine!


Gruß, Diophant

Bezug
                        
Bezug
Grenzwert einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:36 Mo 22.01.2018
Autor: MRsense

vielen Dank , ich versuche mit Intergralkriterium :)

Bezug
        
Bezug
Grenzwert einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Mo 22.01.2018
Autor: Diophant

Hallo,

> Guten Abend, hab folgende Aufgaben gegen.
> Entscheiden Sie, ob die Reihe konvergent ist:

>

> [mm]\summe_{k=2}^{n} \bruch{log(k)}{k^2}[/mm]

>

> Meine Idee war: [mm]\bruch{log(k}{k}*\bruch{1}{k}[/mm]

>

Hm. Der Sinn dieser Idee erschließt sich mir nicht. Da steht nicht mehr als eine Umformung des allgemeinen Reihenglieds.

Weiter muss man einmal wieder die Feststellung treffen, dass es unheimlich hilfreich wäre, wenn bei Fragen zu Reihenkonvergenz und -grenzwerten etwas zu den zur Verfügung stehenden mathematischen Konzepten gesagt würde.

Deine Reihe ist konvergent. Es mag sein, dass es andere Wege gibt, das zu überprüfen. Ich habe es mit Hilfe des Integralkriteriums gemacht und finde diesen Weg ziemlich überschaubar.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]