Grenzwert einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:41 Sa 18.10.2008 | Autor: | Gopal |
Aufgabe | Untersuchen Sie die Konvergenz bzw. Divergenz der Reihe [mm] \summe_{n=3}^{\infty}\bruch{\wurzel{n+3}-\wurzel{n-3}}{n^\alpha} [/mm] in Abhängigkeit von [mm] \alpha\in\IR. [/mm] |
Hallo,
kann mir jemand mit der obigen Aufgabe helfen? Mit Majoranten-, Wurzel- oder Quotientenkriterium bin ich bisher irgendwie nicht zum Erfolg gekommen. Kann natürlich auch daran liegen, dass ich mal wieder den Wald vor Bäumen nicht sehe.
danke
Gopla
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:27 Sa 18.10.2008 | Autor: | Gopal |
> Untersuchen Sie die Konvergenz bzw. Divergenz der Reihe
> [mm]\summe_{n=3}^{\infty}\bruch{\wurzel{n+3}-\wurzel{n-3}}{n^\alpha}[/mm]
> in Abhängigkeit von [mm]\alpha\in\IR.[/mm]
also ein wenig hat sich der Wald nun doch schon gelichtet:
[mm] \summe_{n=3}^{\infty}\bruch{\wurzel{n+3}-\wurzel{n-3}}{n^{\alpha}}=\summe_{n=3}^{\infty}\bruch{\wurzel{n+3}-\wurzel{n-3}}{n^{\alpha}}*\bruch{\wurzel{n+3}+\wurzel{n-3}}{\wurzel{n+3}+\wurzel{n-3}}=6\summe_{n=3}^{\infty}\bruch{1}{n^{\alpha} (\wurzel{n+3}+\wurzel{n-3})}<6\summe_{n=3}^{\infty}\bruch{1}{n^{\alpha} \wurzel{n}}=6\summe_{n=3}^{\infty}\bruch{1}{n^{\alpha+\bruch{1}{2}}}
[/mm]
wegen [mm] \summe\bruch{1}{n^k} [/mm] konvergent für k>1 ist dann meine Reihe auch konvergent für [mm] \alpha>\bruch{1}{2}.
[/mm]
und [mm] \alpha \le\bruch{1}{2}?
[/mm]
|
|
|
|
|
Hallo.
> Untersuchen Sie die Konvergenz bzw. Divergenz der Reihe
> [mm]\summe_{n=3}^{\infty}\bruch{\wurzel{n+3}-\wurzel{n-3}}{n^\alpha}[/mm]
> in Abhängigkeit von [mm]\alpha\in\IR.[/mm]
Dein Ansatz für [mm] $\alpha>\frac{1}{2}$ [/mm] ist (bis auf eine von mir korrigierte fehlende Klammer) richtig.
Um etwas über etwaige Divergenz der Reihe herauszufinden, müssen wir sie nach oben abschätzen, z.B. so
[mm]\summe_{n=3}^{\infty}\bruch{\wurzel{n+3}-\wurzel{n-3}}{n^\alpha} = 6\summe_{n=3}^{\infty}\bruch{1}{n^\alpha(\wurzel{n+3}+\wurzel{n-3})}\ge 3\summe_{n=3}^{\infty}\bruch{1}{(n+3)^{\alpha+\frac{1}{2}}},[/mm]
indem man die zweite Wurzel durch [mm] $\sqrt{n+3}$ [/mm] ersetzt und [mm] $n^{\alpha}$ [/mm] durch [mm] $(n+3)^{\alpha}$ [/mm] macht man die ganze Sache nur kleiner (vorausgesetzt, dass [mm] $\alpha\ge [/mm] 0$, aber für den entgegengesetzten Fall ist Divergenz dieser Reihe ziemlich klar...)
Vielleicht hilft Dir das ja schonmal weiter.
Gruß,
Christian
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:24 Mo 20.10.2008 | Autor: | Gopal |
Vielen Dank für die Hilfe! Ja, das hat mir weitergeholfen.
Gruß
Gopal
|
|
|
|