matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenGrenzwert bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Grenzwert bestimmen
Grenzwert bestimmen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 Mi 02.01.2013
Autor: piriyaie

Aufgabe
[mm] a_{n}=\bruch{1}{n^{3}}*\summe_{k=1}^{n} (2k-1)^{2} [/mm]

Hallo,

ich soll den Grenzwert für die obige Folge bestimmen. Leider habe ich absolut keine Ahnung wo ich da genau anfangen soll.

Also der erste Schritt währe wohl das ausmultiplizieren. Dann sähe die Folge so aus:

[mm] a_{n}=\bruch{1}{n^{3}}*\summe_{k=1}^{n} (2k-1)^{2} [/mm] = [mm] \bruch{1}{n^{3}}*\summe_{k=1}^{n} (4k^{2}-4k+1) [/mm]

Aber weiter komm ich leider ned. Was muss ich genau machen?

Danke schonmal.

Grüße
Ali

        
Bezug
Grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 Mi 02.01.2013
Autor: Richie1401

Hallo,

> [mm]a_{n}=\bruch{1}{n^{3}}*\summe_{k=1}^{n} (2k-1)^{2}[/mm]
>  Hallo,
>  
> ich soll den Grenzwert für die obige Folge bestimmen.
> Leider habe ich absolut keine Ahnung wo ich da genau
> anfangen soll.
>  
> Also der erste Schritt währe wohl das ausmultiplizieren.
> Dann sähe die Folge so aus:
>  
> [mm]a_{n}=\bruch{1}{n^{3}}*\summe_{k=1}^{n} (2k-1)^{2}[/mm] =
> [mm]\bruch{1}{n^{3}}*\summe_{k=1}^{n} (4k^{2}-4k+1)[/mm]

Du kannst die Summe nun auseinanderziehen.
[mm] \summe_{k=1}^{n} (4k^{2}-4k+1)=4\sum_{k=1}^{n}{k^2}-4\sum_{k=1}^{n}{k}+\sum_{k=1}^{n}1 [/mm]

Die Summen sollten dir bekannt vorkommen (Gaußsche Summenformeln).

Aber vermutlich hast du zu Beginn des Studiums auch bei Aufgaben zur vollständigen Induktion die Gleichheit
[mm] \summe_{k=1}^{n} (2k-1)^{2}=\frac{4n^3-n}{3} [/mm]
bewiesen. Dann kannst du diese natürlich sofort nutzen.

>  
> Aber weiter komm ich leider ned. Was muss ich genau
> machen?
>  
> Danke schonmal.
>  
> Grüße
>  Ali


Bezug
                
Bezug
Grenzwert bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Mi 02.01.2013
Autor: piriyaie

Super! Dein Tipp war echt total hilfreich.

Also hier mein Lösungsvorschlag:

[mm] a_{n} [/mm] = [mm] \bruch{1}{n^{3}}*\summe_{k=1}^{n} (2k-1)^{2} [/mm]

[mm] \limes_{n\rightarrow\infty} \bruch{1}{n^{3}}*\summe_{k=1}^{n} (2k-1)^{2} [/mm] = [mm] \limes_{n\rightarrow\infty} \bruch{4-\bruch{1}{n^{2}}}{3}=\bruch{4}{3} [/mm]

Nebenrechnung:

[mm] \bruch{1}{n^{3}}*\summe_{k=1}^{n} (2k-1)^{2} [/mm] = [mm] \bruch{1}{n^{3}}*\bruch{4n^{3}-n}{3}=\bruch{4n^{3}-n}{3n^{3}}=\bruch{n^{3}(4-\bruch{1}{n^{2})}}{n^{3}(3)}=\bruch{4-\bruch{1}{n^{2}}}{3} [/mm]


richtig????


Danke schonmal.

Grüße
Ali

Bezug
                        
Bezug
Grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Mi 02.01.2013
Autor: Richie1401

Hallo,

> Super! Dein Tipp war echt total hilfreich.
>  
> Also hier mein Lösungsvorschlag:
>  
> [mm]a_{n}[/mm] = [mm]\bruch{1}{n^{3}}*\summe_{k=1}^{n} (2k-1)^{2}[/mm]
>  
> [mm]\limes_{n\rightarrow\infty} \bruch{1}{n^{3}}*\summe_{k=1}^{n} (2k-1)^{2}[/mm]
> = [mm]\limes_{n\rightarrow\infty} \bruch{4-\bruch{1}{n^{2}}}{3}=\bruch{4}{3}[/mm]
>  
> Nebenrechnung:
>  
> [mm]\bruch{1}{n^{3}}*\summe_{k=1}^{n} (2k-1)^{2}[/mm] =
> [mm]\bruch{1}{n^{3}}*\bruch{4n^{3}-n}{3}=\bruch{4n^{3}-n}{3n^{3}}=\bruch{n^{3}(4-\bruch{1}{n^{2})}}{n^{3}(3)}=\bruch{4-\bruch{1}{n^{2}}}{3}[/mm]
>  
>
> richtig????

Ja, das stimmt. Jetzt musst du nur noch den Grenzwert der Folge bestimmen.

>  
>
> Danke schonmal.
>  
> Grüße
>  Ali


Bezug
                                
Bezug
Grenzwert bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:18 Mi 02.01.2013
Autor: piriyaie

Hab ich doch oberhalb der Nebenrechnung gemacht. Oder ist das falsch?

Der Grenzwert ist [mm] \bruch{3}{4} [/mm] .

Bezug
                                        
Bezug
Grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:21 Mi 02.01.2013
Autor: Richie1401

Sorry, Ja der erste Grenzwert ist richtig. Das hatte ich dann übersehen.

Stimmt also alles. Perfekt!

> Hab ich doch oberhalb der Nebenrechnung gemacht. Oder ist
> das falsch?
>  
> Der Grenzwert ist [mm]\bruch{3}{4}[/mm] .

Der hier ist falsch. (Zahlendreher)

Schönen Abend!

Bezug
                                                
Bezug
Grenzwert bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:24 Mi 02.01.2013
Autor: piriyaie

Vielen dank. dir auch schönen abend :-D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]