matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwert bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Grenzwerte" - Grenzwert bestimmen
Grenzwert bestimmen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:25 Fr 05.09.2008
Autor: RENE85

Aufgabe
[mm] \lim_{n \to \infty}(1+\bruch{1}{2x})^x [/mm]

Meine Frage ist wahrscheinlich nicht grad sonderlich intelligent aber ich hab mich schon eine weile nicht mehr damit beschäftigt.

Um den Grenzwert zu bilden reicht einsetzen von [mm] \infty [/mm] wahrscheinlich nicht aus, sprich:

[mm] (1+\bruch{1}{2\infty})^\infty [/mm] = [mm] (1+0)^\infty [/mm] = 1

Wäre über ein paar hinweise sehr dankbar.
lg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwert bestimmen: Tipp
Status: (Antwort) fertig Status 
Datum: 12:30 Fr 05.09.2008
Autor: Loddar

Hallo Rene!


Das stimmt so nicht. [notok]

Kennst Du denn nicht folgenden Grenzwert:
[mm] $$\limes_{n\rightarrow\infty}\left(1+\bruch{1}{n}\right)^n [/mm] \ = \ e$$

Daraus kann man dann auch ableiten:
[mm] $$\limes_{n\rightarrow\infty}\left(1+\bruch{\red{a}}{n}\right)^n [/mm] \ = \ [mm] e^{\red{a}}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Grenzwert bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:16 Fr 05.09.2008
Autor: RENE85

Sorry, hatte das eben aus Versehen als Mitteilung schonmal gepostet.

nein, der war mir nicht bekannt.
Heißt das ich forme [mm] \bruch{1}{2x} [/mm] um in [mm] \bruch{0,5}{x} [/mm] und erhalte somit für den Grenzwert [mm] e^{0,5} [/mm] ?

Wenn ja, wie gehe ich denn an sowas heran wenn ich wie in meinem Fall das von dir genannte Beispiel nicht kenn?

danke schonmal und sorry für doppelt.

Bezug
                        
Bezug
Grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Fr 05.09.2008
Autor: angela.h.b.


> Sorry, hatte das eben aus Versehen als Mitteilung schonmal
> gepostet.
>  
> nein, der war mir nicht bekannt.
>  Heißt das ich forme [mm]\bruch{1}{2x}[/mm] um in [mm]\bruch{0,5}{x}[/mm] und
> erhalte somit für den Grenzwert [mm]e^{0,5}[/mm] ?

Hallo,

ja, so geht das.

>  
> Wenn ja, wie gehe ich denn an sowas heran wenn ich wie in
> meinem Fall das von dir genannte Beispiel nicht kenn?

In einer Prüfung oder Klausur meinst Du?

Es darf einfach nicht passieren, daß Du [mm] \lim_{n\to \infty}(1+\bruch{1}{n})^n [/mm] nicht kennst.

Du mußt es Dir ab heute ganz fest merken.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]