matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteGrenzwert Wurzelfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Grenzwerte" - Grenzwert Wurzelfunktion
Grenzwert Wurzelfunktion < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert Wurzelfunktion: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 10:04 Sa 13.01.2007
Autor: Analytiker

Aufgabe
Bestimmen Sie den Grenzwert der Folge:

[mm] b(n)=\wurzel{3n^2-n}-\wurzel{3n^2} [/mm]

Hi Leute,

habe bei dieser Aufgabe schon vieles versucht... Komme aber nicht drauf. Sollte man eventuell erweitern...Über dritte Binomische Formel??? Haut irgendwie alles nicht hin bei mir, kann mir jemand helfen die Aufgabe zu lösen?

Vielen Dank im Voraus.

        
Bezug
Grenzwert Wurzelfunktion: 3. binomische Formel
Status: (Antwort) fertig Status 
Datum: 10:10 Sa 13.01.2007
Autor: Loddar

Hallo Analytiker!


Erweitere diesen Term mit [mm] $\left( \ \wurzel{3n^2-n} \ \red{+} \ \wurzel{3n^2} \ \right)$ [/mm] zu einer 3. binomischen Formel.

Anschließend zusammenfassen und im Nenner $n_$ ausklammern ...


Gruß
Loddar


Bezug
                
Bezug
Grenzwert Wurzelfunktion: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 11:12 Sa 13.01.2007
Autor: Analytiker

Danke Loddar,

ich habe das fast alles hinbekommen, außer das "ausklammern"... wie gehe ich da ran... Bitte um Lösung... Danke

Analytiker

Bezug
                        
Bezug
Grenzwert Wurzelfunktion: ausklammern
Status: (Antwort) fertig Status 
Datum: 13:24 Sa 13.01.2007
Autor: Loddar

Hallo Analytiker!


Betrachten wir mal nur den Nenner mit [mm] $\wurzel{3n^2-n}+\wurzel{3n^2}$ [/mm] :

[mm] $\wurzel{3n^2-n}+\wurzel{3n^2} [/mm] \ = \ [mm] \wurzel{n^2*\left(3-\bruch{1}{n}\right)}+\wurzel{3n^2} [/mm] \ = \ [mm] \wurzel{n^2}*\wurzel{3-\bruch{1}{n}}+\wurzel{n^2}*\wurzel{3} [/mm] \ = \ [mm] n*\wurzel{3-\bruch{1}{n}}+n*\wurzel{3} [/mm] \ = \ ...$


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]