matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenGrenzwert Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Grenzwert Integral
Grenzwert Integral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 So 27.04.2014
Autor: AlfredGaebeli

Aufgabe
Beweisen Sie, dass [mm] \forall \alpha \n C^1(\mathbb{R}) [/mm] mit [mm] \alpha(0)=0[/mm] und [mm] f(0,0)=0 [/mm]  gilt

[mm] \lim_{n \to \infty} n^2 \int_{0}^{1/n} f(x,\alpha(x))dx = \frac{1}{2} (\partial_x f(0,0)+\alpha'(0)\partial_yf(0,0)) [/mm]

Ich bin zum Assistenten gegangen und ihn um einen Tipp gebeten.
Er sagte daraufhin ich solle mal die Substitution [mm] t=\frac{1}{n} [/mm] versuchen.

Ich tex jetzt einfach mal was ich gemacht habe:

[mm] \lim_{t \to 0} \frac{1}{n^2} \int_{t}^{0}f(x,\alpha(x))dx=\lim_{t \to 0} \frac{f(x,\alpha(x)) \ |_ 0^t }{t^2} [/mm]

[mm] \lim_{t \to 0} \frac{f(t,\alpha(t))}{t^2} [/mm]

Ich hoffe mal das ist der richtige Ansatz. Ansonsten leider keine Idee.
Hoffentlich weiss wer Rat.
Gruss
Alfred Gaebeli

        
Bezug
Grenzwert Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 00:23 Mo 28.04.2014
Autor: leduart

hallo
schreib statt f die Stammfunktion von f, also F
dann hast du [mm] lim1/t^2( F(t,\alpha(t))-F(0,0) [/mm]
ond jetzt die erste ind 2te Abl. von F an der Stelle 0
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]