matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieGrenzwert Binomialverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Grenzwert Binomialverteilung
Grenzwert Binomialverteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert Binomialverteilung: Idee
Status: (Frage) beantwortet Status 
Datum: 10:26 Do 15.05.2014
Autor: Topologe

Aufgabe
Es sei X [mm] \sim [/mm] Bin(2m,0.5) eine binomialverteilte Zufallsvariable für ein m [mm] \in \IN. [/mm]
Außerdem gilt [mm] \IP(X=m+k)=\bruch{(2m)!}{(m+k)!(m-k)!}*\bruch{1}{4^{m}}. [/mm]

Wir setzten nun [mm] a(m,k):=\bruch{4^{m}}{\vektor{2m \\ m}} \IP(X=m+k), [/mm] für k=0,1,...,m.

Zeigen Sie, dass

[mm] \limes_{m\rightarrow\infty} (a(m,k))^{m}=e^{-k^{2}} [/mm]


Hi,

bräuchte leider einen Tipp..

Ich bin jetzt gekommen bis [mm] (\bruch{m!m!}{(m+k)!(m-k)!})^{m} [/mm]

Nur wie koennte ich jetzt weiter bis [mm] (1-\bruch{k^{2}}{m})^{m} [/mm] kommen? Wüsste jetzt nicht so ganz, wie ich das auseinanderziehen könnte...

Würde mich über Tipps freuen!

LG

        
Bezug
Grenzwert Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:53 Do 15.05.2014
Autor: luis52

Moin, ich weiss nicht ob es hilft:


[mm] $\bruch{m!m!}{(m+k)!(m-k)!}=\frac{(m-k+1)\cdot\ldots\cdot(m-1)\cdot m}{(m+k+1)\cdot\ldots\cdot(m+k-1)\dot(m+k)}$. [/mm]

Zaehler und Nenner haben jeweils $k$ Faktoren...



Bezug
                
Bezug
Grenzwert Binomialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:36 Do 15.05.2014
Autor: Topologe

Super, ich glaube ich weiss worauf du hinaus willst!

[mm] (\bruch{(m-k+1)*...*(m-2)m}{(m+k+1)*...*(m+k-1)(m+k)})^{m}=(\bruch{m-k+1}{m+k+1})^{m}*...*(\bruch{m-1}{m+k-1})^{m}*(\bruch{m}{m+k})^{m} [/mm]

Nun die einzelnen Brüche durch den jeweiligen Zähler dividieren und schon hat man das Ergebnis :-)

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]