matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Grenzwert Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - Grenzwert Beweis
Grenzwert Beweis < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 Sa 08.05.2010
Autor: MontBlanc

Aufgabe
Zeigen Sie, ausgehend von der Definition des Grenzwertes einer Funktion, dass die folgenden Funktionen [mm] f,g:\IR-\{0\}\to\IR [/mm] mit [mm] f(x)=\bruch{5x^2+1}{x}, g(x)=\bruch{2x^2+1}{x} [/mm] keinen Grenzwert an der Stelle x=0 besitzen, die funktionen f-g, [mm] \bruch{f}{g} [/mm] und [mm] \bruch{g}{f} [/mm] jedoch schon.

hallo,

die Definition ist

$ [mm] \forall\ \epsilon>0\ \exists\ \delta>0\ \forall 0<|x|<\delta \Rightarrow |f(x)-l|<\epsilon [/mm] $.

Hier muss ich ja rechts- und linksseitige Grenzwerte betrachten, da 0 aus der Definitionsmenge ausgenommen wurde. Die Funktionen gehen für sehr kleine x gegen [mm] \infty [/mm] bzw. [mm] -\infty [/mm] ,  ergo muss ich zeigen, dass sie nicht beschränkt sind, also dass

[mm] \exists \epsilon \forall \delta \exists [/mm] x mit [mm] 0<|x|<\delta \Rightarrow [/mm] |f(x)|>M .

Nehme ich jetzt bsp [mm] f(x)=\bruch{5x^2+1}{x} [/mm] .

Wie schätze ich dann ab um das [mm] \epsilon [/mm] richtig zu wählen ?

Meine Idee war, das ganze gegen [mm] \bruch{1}{x} [/mm] abzuschätzen und dann [mm] \delta=\bruch{1}{M} [/mm] zu setzen, ginge das damit ? Wäre damit auch gezeigt, dass an der Stelle kein Grenzwert exisitiert ? Ich denke schon, oder ?

Ich komme durch das x im nenner nicht so recht dahinter.

Lg

        
Bezug
Grenzwert Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 Do 13.05.2010
Autor: SEcki


> Meine Idee war, das ganze gegen [mm]\bruch{1}{x}[/mm] abzuschätzen
> und dann [mm]\delta=\bruch{1}{M}[/mm] zu setzen, ginge das damit ?

Dem ertsen kann ich zustimmen - das zweite verstehe ich nicht. Es gilt doch [m]|1/x|\le <|f(x)|[/m]. Also kannst du die Divergenz für [m]1/x[/m] zeigen ...

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]