matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesGraph einer impliz. Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - Graph einer impliz. Funktion
Graph einer impliz. Funktion < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Graph einer impliz. Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 Fr 15.08.2008
Autor: tedd

Aufgabe
Bestimmen Sie den Graph der folgenden impliziten "Funktion:
[mm] x^2+y^2-\sqrt{x^2+y^2}=x [/mm]

Wie gehe ich denn da jetzt vor?
Dachte erst man könnte irgendwie eine Wertetabelle machen aber da wüsste ich gar nicht wo ich was einsetzen soll.
Bzw ich könnte ein x einsetzen und dann nach y auflösen, das klappt glaube ich aber da brauche ich ja ewig bis ich genug werte habe?
Beispielsweise x=-3
[mm] -3=9+y^2-\sqrt{9+y^2} [/mm]
[mm] 12+y^2=\sqrt{9+y^2} [/mm]
[mm] 144+24y^2+y^4=9+y^2 [/mm]
[mm] y^4+23y^2+135=0 [/mm]
[mm] v:=y^2 [/mm]

[mm] v^2+23v+135=0 [/mm]

[mm] v_{1/2}=-\bruch{23}{2}\pm\sqrt{\bruch{529}{4}-\bruch{520}{4}} [/mm]
[mm] v_1=-\bruch{23}{2}+\bruch{9}{2}=-7=y_1^2 [/mm]
[mm] \to y_1=\sqrt{v_1} [/mm] geht nicht da [mm] v_1 [/mm] negativ, das gleiche gilt für [mm] v_2 [/mm] also gibts für x=-3 keine Lösung.....

und direkt nach einer der variablen auflösen um eine xplizite Darstellung ist wahrscheinlich gar nicht möglich?

Wie würdet ihr den Graph bestimmen?

Danke und besten Gruß,
tedd

        
Bezug
Graph einer impliz. Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Fr 15.08.2008
Autor: Somebody


> Bestimmen Sie den Graph der folgenden impliziten
> "Funktion:
>  [mm]x^2+y^2-\sqrt{x^2+y^2}=x[/mm]
>  Wie gehe ich denn da jetzt vor?
>  Dachte erst man könnte irgendwie eine Wertetabelle machen
> aber da wüsste ich gar nicht wo ich was einsetzen soll.
>  Bzw ich könnte ein x einsetzen und dann nach y auflösen,
> das klappt glaube ich aber da brauche ich ja ewig bis ich
> genug werte habe?

In diesem Falle scheint mir ein Übergang zu Polarkoordinaten [mm] $x=r\cos(\varphi)$, $y=r\sin(\varphi)$ [/mm] leicht eine explizite Darstellung zu liefern. Und zwar [mm] $r=1+\cos(\varphi)$. [/mm] Dies lässt sich dann natürlich leicht plotten/zeichnen:

[Dateianhang nicht öffentlich]


Der gesuchte Graph ist also [mm] $\{\big((1+\cos(\varphi))\cos(\varphi),(1+\cos(\varphi))\sin(\varphi)\big)\;\mid\; \varphi\in [0;2\pi/3]\}$ [/mm] oder, andere Möglichkeit, [mm] $\{\big((1+\cos(\varphi))\cos(\varphi),(1+\cos(\varphi))\sin(\varphi)\big)\;\mid\; \varphi\in [4\pi/3;2\pi]\}$. [/mm]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Graph einer impliz. Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:04 Mo 18.08.2008
Autor: tedd

Hey Somebody :)
Danke für die Antwort.
Besten Gruß,
tedd

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]