matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenGram-Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Gram-Matrix
Gram-Matrix < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gram-Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:34 So 26.09.2010
Autor: papilio

Aufgabe
Es sei ß die folgende Bilinearform auf dem R-Vektorraum [mm] R^{1x3}: [/mm]
ß : [mm] R^{1x3} [/mm] x [mm] R^{1x3} [/mm] -> R; ß([x1; x2]; [y1; y2]) = x1y1 + 2x2y2 - x1y2 + x2y1:
Berechnen Sie die Gram-Matrix von ß bezüglich der Basis B := ([1; 1]; [1;-1]).

Hallo,

wenn ich eine Gram-Matrix zu berechnen habe, dann setze ich doch die Basis in die Abbildung ein und da ich nur die eine Basis gegeben habe, müsste ichdamit dann auch die Gam-Matix gegeben haben. Wenn ich das hier allerdings mache, dann kommt lediglich 1 herraus, aber das ist doch nicht meien Gram-Matrix, oder?

Rechnung:
ß(B) = ß([1; 1]; [1; -1]) = 1*1 + 2*1*(-1) - 1*(-1) + 1*1 =1

        
Bezug
Gram-Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:02 So 26.09.2010
Autor: schachuzipus

Hallo Papilio,


> Es sei ß die folgende Bilinearform auf dem R-Vektorraum
> [mm]R^{1x3}:[/mm]
>  ß : [mm]R^{1x3}[/mm] x [mm]R^{1x3}[/mm] -> R; ß([x1; x2]; [y1; y2]) = x1y1

> + 2x2y2 - x1y2 + x2y1:
>  Berechnen Sie die Gram-Matrix von ß bezüglich der Basis
> B := ([1; 1]; [1;-1]).
>  Hallo,
>  
> wenn ich eine Gram-Matrix zu berechnen habe, dann setze ich
> doch die Basis in die Abbildung ein und da ich nur die eine
> Basis gegeben habe, müsste ichdamit dann auch die
> Gam-Matix gegeben haben. Wenn ich das hier allerdings
> mache, dann kommt lediglich 1 herraus, aber das ist doch
> nicht meien Gram-Matrix, oder?
>  
> Rechnung:
>  ß(B) = ß([1; 1]; [1; -1]) = 1*1 + 2*1*(-1) - 1*(-1) +
> 1*1 =1

Die Einträge der Grammatrix berechnen sich doch als [mm]a_{ij}=\beta((b_i,b_j))[/mm]

Wobei die [mm]b_i[/mm] die Basisvektoren sind, also [mm]b_1=(1,1), b_2=(1,-1)[/mm]

Der Eintrag [mm]a_{11}[/mm] ist [mm]\beta(b_1,b_1)=\beta((1,1),(1,1))=1\cdot{}1+2\cdot{}1\cdot{}1-1\cdot{}1+1\cdot{}1=3[/mm]

Den Eintrag [mm]a_{12}[/mm] hast du oben schon berechnet ...

Nun rechne mal zuende ...

Gruß

schachuzipus


Bezug
                
Bezug
Gram-Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:17 So 26.09.2010
Autor: papilio

Aso...

also habe ich dann [mm] M_{B}( [/mm] ß ) = [mm] \pmat{ 3 & 1 \\ -3 & 3 } [/mm] ?

Bezug
                        
Bezug
Gram-Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 So 26.09.2010
Autor: schachuzipus

Hallo nochmal,


> Aso...
>  
> also habe ich dann [mm]M_{B}([/mm] ß ) = [mm]\pmat{ 3 & 1 \\ -3 & 3 }[/mm] ?

Jo, sieht gut aus!

Gruß

schachuzipus


Bezug
                                
Bezug
Gram-Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:25 So 26.09.2010
Autor: papilio

Danke für die Hilfe =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]