matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenGradientenfelder
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Partielle Differentialgleichungen" - Gradientenfelder
Gradientenfelder < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradientenfelder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 So 30.06.2013
Autor: Mendez117

Ich soll bei einer Aufgabe schauen ob es sich beim folgende Vektorfelder um Gradientenfelder handelt. Wenn ja soll ich die Stammfunktion bilden.

F(x,y) = [mm] (\bruch{1}{x^{2}} +\bruch{1}{y^{2} }) [/mm] (-y, x)

Ich steh aber total auf dem Schlauch wegen der Darstellung der oberen Funktion. Die überprufung ob es sich um ein Gradientenfeld handelt ist soweit ich weiß mit der Integrabilitätsbedingung möglich. Das bestimmen der Stammfunktion ist mir auch bekannt. Jedoch waren die Teilaufgaben zuvor in der Form:

F(x,y) = (xy, [mm] \bruch{x^{2}}{2}) [/mm] und stellten für mich kein Problem da.

Wie kann ich aber die erste Funktion so umrechnen? Oder wie soll ich das handhaben ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gradientenfelder: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 So 30.06.2013
Autor: notinX

Hallo,

> Ich soll bei einer Aufgabe schauen ob es sich beim folgende
> Vektorfelder um Gradientenfelder handelt. Wenn ja soll ich
> die Stammfunktion bilden.
>  
> F(x,y) = [mm](\bruch{1}{x^{2}} +\bruch{1}{y^{2} })[/mm] (-y, x)
>  
> Ich steh aber total auf dem Schlauch wegen der Darstellung
> der oberen Funktion. Die überprufung ob es sich um ein
> Gradientenfeld handelt ist soweit ich weiß mit der
> Integrabilitätsbedingung möglich. Das bestimmen der
> Stammfunktion ist mir auch bekannt. Jedoch waren die
> Teilaufgaben zuvor in der Form:
>  
> F(x,y) = (xy, [mm]\bruch{x^{2}}{2})[/mm] und stellten für mich kein
> Problem da.
>  
> Wie kann ich aber die erste Funktion so umrechnen? Oder wie
> soll ich das handhaben ?

es handelt sich dabei um eine ganz gewöhnliche Skalarmultiplikation. Jede Komponente des Vektors wird mit dem Faktor multipliziert.

>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]