matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesGradient bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Gradient bestimmen
Gradient bestimmen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradient bestimmen: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:29 Mo 27.01.2014
Autor: Bindl

Aufgabe
Gegeben sei die Funktion f : [mm] R^2 [/mm] -> R, x -> f(x) = x1 + x22. Bestimmen Sie den Gradienten von f. Skizzieren Sie die Niveaumengen zu den Niveaus 0, 2 und 4 in der x1-x2-Ebene und den Gradienten von f in einem Koordinatensystem.

Hi zusammen,

habe hier bisher folgendes gemacht.
[mm] D_1(x_1,x_2) [/mm] = 1
[mm] D_2(x_1,x_2) [/mm] = [mm] 2x_2 [/mm]

f = (1 , [mm] 2x_2) [/mm]
grad f = [mm] \begin{pmatrix} 1 \\ 2x_2 \end{pmatrix} [/mm]

Niveaumengen : [mm] N_f(c) [/mm] = {x [mm] \in D_f: [/mm] f(x) = c} [mm] \subset R^m [/mm]
fr m=2 sind es Höhenlinien
Das wurde bei ums im Ksirpt kurz beschrieben und das wars dann aber auch schon wieder.

Ich denke mal 0,2&4 sind die c-Werte.
Je nach c wird eine Funktion entstehen die darauf hinweißt ob es eine Parabell oder so ist.
Das ist alles was ich darüber weiß. Wie ich c anzuwenden habe und wie dadurch eine Funktion ensteht anhand der ich sagen kann was es für eine Funktion ist weiß ich leider nicht.

        
Bezug
Gradient bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Mo 27.01.2014
Autor: Richie1401

Hallo,

> Gegeben sei die Funktion f : [mm]R^2[/mm] -> R, x -> f(x) = x1 +
> x22. Bestimmen Sie den Gradienten von f. Skizzieren Sie die
> Niveaumengen zu den Niveaus 0, 2 und 4 in der x1-x2-Ebene
> und den Gradienten von f in einem Koordinatensystem.

Ja, na wenn du die Darstellung schon einmal weißt, dann ist doch gut.

Also:

f(x)=c, damit haben wir bspw. mit c=2:

   [mm] x_1+{x_2}^2=c=2 [/mm]

Setze mal [mm] x_1=x [/mm] und [mm] x_2=y. [/mm] Dann haben wir doch

   [mm] x+y^2=2 \gdw y=\pm\sqrt{2-x} [/mm]

Nun weißt du doch aber, wie man das zeichnet, oder?

Bezug
                
Bezug
Gradient bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 Di 28.01.2014
Autor: Bindl

Hi,

danke für die Hilfe. Also die Niveaumengen konnte ich nun einzeichnen.

Wie skizziere ich den Gradienten f = [mm] \begin{pmatrix} 1 \\ 2x_2 \end{pmatrix} [/mm] ?

Bezug
                        
Bezug
Gradient bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 Di 28.01.2014
Autor: chrisno


> Hi,
>  
> danke für die Hilfe. Also die Niveaumengen konnte ich nun
> einzeichnen.
>  
> Wie skizziere ich den Gradienten f = [mm]\begin{pmatrix} 1 \\ 2x_2 \end{pmatrix}[/mm]
> ?

Du wählst Dir einige Punkte mit den Koordinaten [mm] $(x_1; x_2)$ [/mm] aus und zeichnest an die Punkte Vektoren [mm]\begin{pmatrix} 1 \\ 2x_2 \end{pmatrix}[/mm] ein. Also im Punkt (3; 3) ist der Vektor [mm]\begin{pmatrix} 1 \\ 2\cdot 3 \end{pmatrix}[/mm] einzuzeichnen.


Bezug
                                
Bezug
Gradient bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:47 Di 28.01.2014
Autor: Bindl

Ok, danke.
Dann mache ich das mal mit 3 Punkten. Das sollte genügen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]