matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenGradient & Hesse Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Gradient & Hesse Matrix
Gradient & Hesse Matrix < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gradient & Hesse Matrix: wie geht das?
Status: (Frage) beantwortet Status 
Datum: 23:29 Fr 06.06.2008
Autor: summer00

Aufgabe
Berechnen Sie den Gradienten un die Hesse-Matrix der folgenden Funktionen:
[mm] a)f:\IR^2 \to \IR. [/mm] f(x,y)=xy

Wikipedia hat nicht wirklich weitergeholfen :)
Kann jemand erklären, wie das geht und wie wir vorgehen müssen?
Danke sehr

        
Bezug
Gradient & Hesse Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 23:46 Fr 06.06.2008
Autor: MathePower

Hallo summer00,

> Berechnen Sie den Gradienten un die Hesse-Matrix der
> folgenden Funktionen:
>  [mm]a)f:\IR^2 \to \IR.[/mm] f(x,y)=xy
>  Wikipedia hat nicht wirklich weitergeholfen :)
>  Kann jemand erklären, wie das geht und wie wir vorgehen
> müssen?

Um den Gradienten dieser Funktion zu bilden, berechnest Du die []partiellen Ableitungen nach x und y.

Demnach: [mm]grad\left(f\right)=\pmat{\bruch{\partial f}{\partial x} \\ \bruch{\partial f}{\partial y}}=\pmat{f_{x} \\ f_{y}}[/mm]

Die Hesse-Matrix ist die Matrix der zweiten partiellen Ableitungen von f:

[mm]H\left(f\right)=\pmat{\bruch{\partial^{2} f}{\partial x^{2}} & \bruch{\partial^{2} f}{\partial x \partial y} \\ \bruch{\partial^{2} f}{\partial y \partial x} & \bruch{\partial^{2} f}{\partial y^{2}}}}=\pmat{f_{xx} & f_{xy} \\ f_{yx} & f_{yy}}[/mm]


>  Danke sehr

Gruß
MathePower

Bezug
                
Bezug
Gradient & Hesse Matrix: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:32 Sa 07.06.2008
Autor: summer00

Wir haben die Aufgabe komplett verstanden und gelöst. Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]