matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieGrad eines Morphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Zahlentheorie" - Grad eines Morphismus
Grad eines Morphismus < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grad eines Morphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 So 28.11.2010
Autor: Tinuviel-Aelin

Aufgabe
K algebraisch abgeschlossen, [mm] \phi [/mm] : E [mm] \to [/mm] E' nicht-konstante Isogenie. Dann gilt für alle P [mm] \in [/mm] E'(K):
[mm] |(\phi)^{-1}(P)| [/mm] = [mm] deg_{s}(\phi) [/mm]
Insbesondere ist hat der Kern von [mm] \phi [/mm] die Ordnung [mm] deg_{s}(\phi) [/mm]

Hallo,
Für das Verständnis der Aussage, müsste ich wissen, was der Grad eines Morphismus ist - und dazu habe ich trotz längerem Suchen nichts konkretes gefunden (- sondern immer nur Aussagen, die den Grad schon voraussetzen). Ich verstehe auch nicht, worauf sich das tiefgestellte s bezieht...

Es wäre ganz toll, wenn mir jemand weiterhelfen könnte - wenn auch nur durch Verweis auf anderswo vorhandene Definitionen/Hinweise/...
Vielen Dank schonmal im Voraus!

        
Bezug
Grad eines Morphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 So 28.11.2010
Autor: PeterB

Hallo,

der grad einer Isogenie wird typischer Weise über die Abbildung der Funktionenkörper defiert: Falls $F$ der Funktionenkörper von $E$ und $F'$ der von $E'$ ist, dann enspricht [mm] $\phi$ [/mm] eine Abbildung [mm] $\phi^*:F'\rightarrow [/mm] F$ anschaulich der pull back. Da alle mophismen von Körpern injektiv sind, ist dies eine Körpererweiterung, und man kann zeigen, dass es eine endliche Körpererweiterung ist. Der Grad von [mm] $\phi$ [/mm] ist jetzt der grad der Erweiterung. [mm] $deg_s$ [/mm] bezeichnet den separablen grad, also den Grad der maximalen separaben Teilerweiterung.

Es gibt aber auch andere möglichkeiten den Separbilitätsgrad zu definieren. Ich würde vielleicht doch noch mal im Skript oder im Buch das ihr verwendet nachsehen.

Gruß
Peter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]