matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesGleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis-Sonstiges" - Gleichungen
Gleichungen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichungen: komme nicht drauf :-(
Status: (Frage) beantwortet Status 
Datum: 09:22 Do 20.09.2007
Autor: Nino00

Hallo zusammen das ist mir schon fast peilich diese frage zu stellen aber es muss leider sein weil ich mich jetzt selber verwirrt habe... :-)

also hab folgende gleichung mit lösung...

x*y=x+4    und   x*y=y+6

y= x+4/x  das ist ja klar...  hier steht aber man könnte es auch so schreiben...
y=1+ 4/x   ist das wirklich so?

dann setzte ich die lösung y=   in die 2 gleichung dann steht da

x* x+4/x = 1+ 4/x +6  

x-3 = 4/x    komm dann da raus.. und wenn ich das jetzt richtig verstehe wurden im ersten teil die 2... x auf und unter dem bruchstrich weg gekürzt... oder etwa nicht :-)??
warum wurde das dann nicht beim anderen teil auch so gemacht :-)

vielen dank für die antwort hoffe jemand versteht was ich meine...

        
Bezug
Gleichungen: Hinweise
Status: (Antwort) fertig Status 
Datum: 09:30 Do 20.09.2007
Autor: Roadrunner

Hallo Nino!



> y= x+4/x  das ist ja klar...  hier steht aber man könnte es
> auch so schreiben...
>  y=1+ 4/x   ist das wirklich so?

Klar, denn Du kannst ja umformen:
$$y \ = \ [mm] \bruch{x+4}{x} [/mm] \ = \ [mm] \bruch{x}{x}+\bruch{4}{x} [/mm] \ = \ [mm] 1+\bruch{4}{x}$$ [/mm]


> dann setzte ich die lösung y=   in die 2 gleichung dann steht da
>  
> x* x+4/x = 1+ 4/x +6  
>
> x-3 = 4/x    komm dann da raus.. und wenn ich das jetzt
> richtig verstehe wurden im ersten teil die 2... x auf und
> unter dem bruchstrich weg gekürzt... oder etwa nicht :-)??

[ok] Genau!


> warum wurde das dann nicht beim anderen teil auch so
> gemacht :-)

Da hier ja die andere Darstellung (nach der o.g. Umformung) als Summe eingesetzt wurde. Man hätte aber auch hier jeweils dieselbe Form einsetzen können:

[mm] $$x*\red{\bruch{x+4}{x}} [/mm] \ = \ [mm] \red{\bruch{x+4}{x}}+6$$ [/mm]
[mm] $$x*\left(\red{1+\bruch{4}{x}}\right) [/mm] \ = \ [mm] \red{1+\bruch{4}{x}}+6$$ [/mm]
Das Ergebnis muss natürlich immer dasselbe sein ...


Gruß vom
Roadrunner


Bezug
                
Bezug
Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:36 Do 20.09.2007
Autor: Nino00

danke für die schnelle antwort...

aber :-)


    $ [mm] x\cdot{}\left(\red{1+\bruch{4}{x}}\right) [/mm] \ = \ [mm] \red{1+\bruch{4}{x}}+6 [/mm] $

kommt denn dann hier nicht -2 raus?

also x-2 =4/x  

das ist das was mich so verwirrt...

Bezug
                        
Bezug
Gleichungen: Nee, nee ...
Status: (Antwort) fertig Status 
Datum: 09:39 Do 20.09.2007
Autor: Roadrunner

Hallo Nino!


Da ist schon alles richtig ...

[mm] $$x*\left(1+\bruch{4}{x}\right) [/mm] \ = \ [mm] 1+\bruch{4}{x}+6$$ [/mm]
$$x+4 \ = \ [mm] \bruch{4}{x}+7$$ [/mm]
$$x- \ [mm] \red{3} [/mm] \ = \ [mm] \bruch{4}{x}$$ [/mm]

Gruß vom
Roadrunner


Bezug
                                
Bezug
Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:44 Do 20.09.2007
Autor: Nino00

vielen dank...

habs zwar nicht 100% verstanden warum... :-))

aber ich kann es mir merken wieso das so ist und das reicht mir....:-P



Bezug
                                        
Bezug
Gleichungen: Wo hängt's denn?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:49 Do 20.09.2007
Autor: Roadrunner

Hallo Nino!


Was genau ist denn noch unklar? Oder hast Du Dich zuvor schlicht und ergreifend verrechnet gehabt?


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]