matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesGleichung umformen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - Gleichung umformen
Gleichung umformen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung umformen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:34 Do 16.07.2015
Autor: mathstat_15

Aufgabe
Lösen Sie folgende Gleichung nach x auf:

[mm] x^{-a} =[(y-x)(1+r)]^{-a} [/mm] * [mm] \beta(1+r) [/mm]

Hallo zusammen!

In einem ersten Schritt habe ich diesen Term mit [mm] 1^{-\bruch{1}{a}} [/mm] multipliziert:

x = [mm] \bruch{y(1+r)}{[\beta(1+r)]^\bruch{1}{a}} [/mm] - [mm] \bruch{x(1+r)}{[\beta(1+r)]^\bruch{1}{a}} [/mm]

soweit so gut...ich bin mir jetzt mit den Potenzregeln unsicher. Ich könnte die Brüche ja auch wie folgt schreiben:

-x * [mm] \beta^{-\bruch{1}{a}} [/mm] * [mm] (1+r)^{-\bruch{1}{a}+1} [/mm]

oder muss das -1 sein bei der letzten Potenz? Was für mich aber keinen Sinn ergeben würde, da die dazugehörige Regel lautet:

[mm] b^{t} [/mm] * [mm] b^{a} [/mm] = [mm] b^{t+a} [/mm]

Ich frage deshalb, weil es in der Musterlösung -1 ist.

Über eine Erklärung würde ich mich sehr freuen!

Beste Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gleichung umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:40 Fr 17.07.2015
Autor: meili

Hallo,

> Lösen Sie folgende Gleichung nach x auf:
>  
> [mm]x^{-a} =[(y-x)(1+r)]^{-a}[/mm] * [mm]\beta(1+r)[/mm]
>  Hallo zusammen!
>  
> In einem ersten Schritt habe ich diesen Term mit
> [mm]1^{-\bruch{1}{a}}[/mm] multipliziert:

Das ist falsch formuliert, aber du hast das richtige gemacht.
Die Gleichung wurde mit [mm] $-\bruch{1}{a}$ [/mm] potenziert.

>  
> x = [mm]\bruch{y(1+r)}{[\beta(1+r)]^\bruch{1}{a}}[/mm] -
> [mm]\bruch{x(1+r)}{[\beta(1+r)]^\bruch{1}{a}}[/mm]
>  
> soweit so gut...ich bin mir jetzt mit den Potenzregeln
> unsicher. Ich könnte die Brüche ja auch wie folgt
> schreiben:
>  
> -x * [mm]\beta^{-\bruch{1}{a}}[/mm] * [mm](1+r)^{-\bruch{1}{a}+1}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


[ok]
$-\bruch{x(1+r){\[ \beta * (1+r)\]^{\bruch{1}{a}} = -x*\beta ^{-\bruch{1}{a}}*(1+r)^{-\bruch{1}{a}+1}$
Da sind die Potenzgesetze richtig angewendet.

>  
> oder muss das -1 sein bei der letzten Potenz? Was für mich
> aber keinen Sinn ergeben würde, da die dazugehörige Regel
> lautet:
>  
> [mm]b^{t}[/mm] * [mm]b^{a}[/mm] = [mm]b^{t+a}[/mm]
>  
> Ich frage deshalb, weil es in der Musterlösung -1 ist.
>  
> Über eine Erklärung würde ich mich sehr freuen!
>  
> Beste Grüße
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß
meili

Bezug
                
Bezug
Gleichung umformen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:58 Fr 17.07.2015
Autor: mathstat_15

Hallo meile!

Vielen Dank für die Antwort. Ich hätte dann nur noch eine Frage: Wenn ich den Term

[mm] (1+r)^{-\bruch{1}{a}+1} [/mm] wieder als Bruch schreibe, kehren sich dann die Vorzeichen um?

also: [mm] \bruch{1}{(1+r)^{\bruch{1}{a}-1}} [/mm] ?

Vielen Dank im Voraus und beste Grüße!

Bezug
                        
Bezug
Gleichung umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Fr 17.07.2015
Autor: chrisno

ja

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]