matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenGleichung lösen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Gleichung lösen
Gleichung lösen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:09 Mo 29.01.2007
Autor: Mark007

Hi, habe mal ne Frage

Wie soll man denn hier nach x auflösen? F(x)= $ [mm] 3\cdot{}(\bruch{1}{3})^{3x+2} [/mm] $ = $ [mm] \bruch{1}{27} [/mm] $
Und wie löst man hier nach x auf, wenn auf bedein seiten x steht?
[mm] \bruch{1}{16}*4^{0,5x-2}=2^{3x} [/mm]

Das 3x ist ein Exponent und das (0,5x-2 auch!
Danke für die Antwort!

        
Bezug
Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 Mo 29.01.2007
Autor: XPatrickX


> Hi,

Hallo :)

>habe mal ne Frage
  

> Wie soll man denn hier nach x auflösen? F(x)=
> [mm]3\cdot{}(\bruch{1}{3})^{3x+2}[/mm] = [mm]\bruch{1}{27}[/mm]

Du musst versuchen, dass auf beiden Seiten die gleiche Basis steht. Teile zuerst auf beiden Seiten durch 3:

[mm] (\bruch{1}{3})^{3x+2} [/mm] = [mm] \bruch{1}{81} [/mm]

Und jetzt versuchen auf der rechten Seite auf die gleiche Basis zu kommen, also auf 1/3

[mm] (\bruch{1}{3})^{3x+2} [/mm] = [mm] (\bruch{1}{3})^{4} [/mm]

Dann kannst du die Exponenten gleichsetzen:

3x+2 = 4

... der Rest sollte klar sein...


> Und wie löst man hier nach x auf, wenn auf bedein seiten x
> steht?
>  [mm]\bruch{1}{16}*4^{0,5x-2}=2^{3x}[/mm]
>

Auch hier wieder die gleiche Basis finden! Tipp: [mm] 2^{2} [/mm] = 4

> Das 3x ist ein Exponent und das (0,5x-2 auch!
>  Danke für die Antwort!

Bitte Gruß Patrick


Bezug
                
Bezug
Gleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 Mo 29.01.2007
Autor: Mark007

Prinzip verstanden!
Aber wie soll ich hier denn durch [mm] \bruch{1}{16} [/mm] teilen?
$ [mm] \bruch{1}{16}\cdot{}4^{0,5x-2}=2^{3x} [/mm] $

Da würde dann doch  4^(0,5x-2)= 16*2^(3x)



Bezug
                        
Bezug
Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 Mo 29.01.2007
Autor: leduart

Hallo
Die [mm] 4^{..} [/mm] durch 16 teilen, bzw [mm] 1/16=4^{-2} [/mm] also :
[mm] \bruch{1}{16}\cdot{}4^{0,5x-2}=4^{-2}*4^{0,5x-2} [/mm]

> Prinzip verstanden!
>  Aber wie soll ich hier denn durch [mm]\bruch{1}{16}[/mm] teilen?
> [mm]\bruch{1}{16}\cdot{}4^{0,5x-2}=2^{3x}[/mm]
>
> Da würde dann doch  4^(0,5x-2)= 16*2^(3x)

Das geht auch mit [mm] 16=2^4 [/mm]

>   folgt [mm] 16*2^{3x}=2^{3x+4} [/mm]

Gruss leduart

Bezug
                                
Bezug
Gleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:45 Mo 29.01.2007
Autor: Mark007

Danke für die Antw. aber,  ich muss ja die [mm] 2^{3x} [/mm] durch [mm] \bruch{1}{16}teilen, [/mm] wenn ich $ [mm] \bruch{1}{16}\cdot{}4^{0,5x-2} [/mm] durch [mm] \bruch{1}{16} [/mm] teile, fällt es ja weg da einmal multipliziert und einmal dividiert wurde!
Wie rechne ich denn nun diese Auffgabe: [mm] 3^{x+2}=3^{2x} [/mm] mit dem Logarithmus, wie löse ich nach x-auf? und wie berechne ich die Aufgabe?: [mm] 2*0,25^{x}=4^{x}? [/mm]

Wär nett, wenn mir das jemand genau erklären könnt Danke

Bezug
                                        
Bezug
Gleichung lösen: Potenzgesetze
Status: (Antwort) fertig Status 
Datum: 23:19 Mo 29.01.2007
Autor: informix

Hallo Mark007,

> Danke für die Antw. aber,  ich muss ja die [mm]2^{3x}[/mm] durch
> [mm]\bruch{1}{16}teilen,[/mm] wenn ich $
> [mm]\bruch{1}{16}\cdot{}4^{0,5x-2}[/mm] durch [mm]\bruch{1}{16}[/mm] teile,
> fällt es ja weg da einmal multipliziert und einmal
> dividiert wurde!

Musst du gar nicht:

>  Aber wie soll ich hier denn durch $ [mm] \bruch{1}{16} [/mm] $ teilen?
> $ [mm] \bruch{1}{16}\cdot{}4^{0,5x-2}=2^{3x} [/mm] $

$ [mm] \underbrace{\bruch{1}{16}}_{=4^{-2}}\cdot{}4^{0,5x-2}=2^{3x} [/mm] $

bei solchen Rechnungen sind die MBPotenzgesetze gefragt!

> Wie rechne ich denn nun diese Aufgabe: [mm]3^{x+2}=3^{2x}[/mm] mit
> dem Logarithmus, wie löse ich nach x-auf?

Potenzen mit gleicher Basis sind gleich, wenn ihre Exponenten gleich sind....

> und wie berechne
> ich die Aufgabe?: [mm]2*0,25^{x}=4^{x}?[/mm]

[mm] 4=2^2 [/mm] und [mm] 0,25=\frac{1}{4} [/mm] solltest du aber wissen...

>  

he, bombardier' uns nicht mit so vielen Aufgaben, sondern versuche mal, wenigstens eine selbst zu lösen! ;-)

> Wär nett, wenn mir das jemand genau erklären könnt Danke  


Gruß informix

Bezug
        
Bezug
Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 Mo 29.01.2007
Autor: Teufel

Hi!

Patricks Variante ist klasse ;) aber normalerweise kann man das auch über den Logarithmus lösen.

[mm] 3*(\bruch{1}{3})^{3x+2}=\bruch{1}{27} [/mm] |:3
[mm] (\bruch{1}{3})^{3x+2}=\bruch{1}{81} [/mm]

Und frühstens hier kannst du schreiben:

[mm] 3x+2=\bruch{log \bruch{1}{81}}{log \bruch{1}{3}} [/mm]

Und dann kannst du x einfach ausrechnen...

Denn [mm] a^x=b \gdw x=\bruch{log b}{log a} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]