Gleichung lösen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | [mm] \bruch{-K^{2}-2,5K-1}{-K} [/mm] > 0 |
Eigentlich ganz simpel, nur mir fehlt der eine Kniff um K zu bestimmen:
1. [mm] \bruch{-(K^{2}+2,5K +1)}{-K} [/mm] > 0
2. => [mm] \bruch{(K^{2}+2,5K +1)}{K} [/mm] > 0
3. Und nun ? * K ? Dann verschwindet es und dann verhaspel ich mich kurz danach....siehe:
4. [mm] K^{2}+2,5K [/mm] +1 > 0 * K
5. [mm] K^{2}+2,5K [/mm] > -1
nun komme ich nicht weiter....was muss ich anders machen ?
grüße siebenstein
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:54 Mo 09.07.2018 | Autor: | fred97 |
> [mm]\bruch{-K^{2}-2,5K-1}{-K}[/mm] > 0
> Eigentlich ganz simpel, nur mir fehlt der eine Kniff um K
> zu bestimmen:
>
> 1. [mm]\bruch{-(K^{2}+2,5K +1)}{-K}[/mm] > 0
>
> 2. => [mm]\bruch{(K^{2}+2,5K +1)}{K}[/mm] > 0
>
> 3. Und nun ? * K ? Dann verschwindet es und dann verhaspel
> ich mich kurz danach....siehe:
>
> 4. [mm]K^{2}+2,5K[/mm] +1 > 0 * K
Ja, wenn K>0 ist, bekommen wir [mm] K^2+2,5K+1>0.
[/mm]
Ist allerdings K<0, so erhalten wir [mm] K^2+2,5K+1<0.
[/mm]
>
> 5. [mm]K^{2}+2,5K[/mm] > -1
Ja im Falle K>0. Und im Falle K<0 ?
>
>
> nun komme ich nicht weiter....was muss ich anders machen ?
>
> grüße siebenstein
|
|
|
|
|
Ach mist, stimmt ja..
Ich habe zuvor schon bestimmt, dass K < 0 ist (Routh-Hurwitz-Kriterium)
daher:
4. [mm] K^{2}+2,5K [/mm] +1 > 0 * K (K<0)
5. [mm] K^{2}+2,5K [/mm] < -1
ab jetzt fange ich aber an, das K die gganze zeit nur hin und her zu schieben
6. [mm] K^{2} [/mm] < -1 -2,5K
ODER
6. K ( K+2,5) < -1
ich komem hier nicht weiter.... wie erhalte ich mein K ?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:19 Mo 09.07.2018 | Autor: | fred97 |
> Ach mist, stimmt ja..
>
> Ich habe zuvor schon bestimmt, dass K < 0 ist
> (Routh-Hurwitz-Kriterium)
>
> daher:
>
> 4. [mm]K^{2}+2,5K[/mm] +1 > 0 * K (K<0)
>
> 5. [mm]K^{2}+2,5K[/mm] < -1
>
>
> ab jetzt fange ich aber an, das K die gganze zeit nur hin
> und her zu schieben
>
> 6. [mm]K^{2}[/mm] < -1 -2,5K
>
> ODER
>
> 6. K ( K+2,5) < -1
>
>
> ich komem hier nicht weiter.... wie erhalte ich mein K ?
Dein K ? Gehört das Dir ? Spass beiseite. Wir haben also die Ungleichung
[mm] K^2+2,5K+1<0.
[/mm]
Die quadratische Gleichung [mm] x^2+2,5x+1=0 [/mm] hat die Lösungen [mm] x_1=-2 [/mm] und [mm] x_2=-1/2.
[/mm]
Nun zeichne mal den Graphen von [mm] f(x)=x^2+2,5x+1. [/mm] Dann sollte Dir klar werden, dass gilt:
f(x) <0 [mm] \gdw x_1
Fazit: [mm] K^2+2,5K+1<0 \gdw [/mm] -2<K<-1/2.
|
|
|
|
|
Danke, leuchtet mir natürlich ein.. ich dachte auch schon an die PQ formel.... habe es nur schnell wieder verworfen, da ich unbedingt die gleichung OHNE lösen wollte...
aber stimmt, du hast natürlich recht.
vielen dank !!!! und einen schönen Tag!
|
|
|
|