matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenGleichung implizit lokal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Gleichung implizit lokal
Gleichung implizit lokal < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichung implizit lokal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:46 So 02.10.2011
Autor: kushkush

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Seien $I,J \subset \IR$ offene Intervalle, $f_{1}:I\rightarrow |IR, f_{2}:J\rightarrow \IR$ stetig, $x_{0} \in I, y_{0} \in J$ und $f_{2}(y_{0}) \ne 0$. Zeigen Sie: Lokal bei $(x_{0},y_{0})$ lässt sich die Gleichung $\int_{y_{0}}^{y} \frac{1}{f_{2}} = \int_{x_{0}}^{x} f_{1}$ nach y auflösen, y(x) ist eine $C^{1}$ Funktion von x und erfüllt $y'(x)= f_{1}(x)f_{2}(y(x))$. (Hinweis: Satz der impliziten Funktion)

Hallo,


Der Satz von der impliziten Funktion: Seien $U,V$ offene Intervalle in $\IR$ und $F:U\times V \rightarrow \IR$ eine stetig dfbr. Abbildung. Erfüllt $(x_{0},y_{0}) \in U \times V$ de Gleichung $F(x_{0},y_{0}=0$ und ist
                    
                    $\frac{\partial F}{\partial y} (x_{0},y_{0}) \ne 0$,


dann existieren offene Intervalle $U_{0},V_{0}$ mit $x_{0} \in U_{0} \subset U$ und $y_{0} \in V_{0} \subset V$, sowie eine eindeutige stetig dfbre. Abbildung $f:U_{0}\rightarrow V_{0}$ mit $f(x_{0})=y_{0}$  so dass

                   $F(x,f(x))=0$
                   $F(x,y)\ne 0$ falls $y\ne f(x)$

für alle $x\in U_{0}, y\in V_{0}$ gilt. Ferner ist $\frac{\partial F}{\partial y}(x,f(x)) \ne 0 \ \forall x\in U_{0}$ und
                      
                   $f'(x)=-(\frac{\partial F}{\partial y}(x,f(x)))^{-1}(\frac{\partial F}{\partial x}(x,(f(x)))$


Die Anwendung des Satzes v.d.i.F. auf $F:I\times J \rightarrow \IR, F(x,y)= \int_{y_{0}}^{y} \frac{1}{f_{2}} - \int_{x_{0}}^{x}f_{1}$.

Nach dem Fundamentalsatz der Analysis gilt auch:

                     $\frac{\partial F}{\partial x} = -f_{1}, \frac{\partial F}{\partial y} = \frac{1}{f_{2}$

      (1): da $f_{2}(y_{0}) \ne 0 $ ist auch $\frac{\partial F(x_{0},y_{0})}{\partial y} \ne 0$



dann stecke ich fest.... wie kommt hier weiter?


Bin für jegliche Hinweise sehr dankbar.




Gruss
kushkush

        
Bezug
Gleichung implizit lokal: Antwort
Status: (Antwort) fertig Status 
Datum: 08:56 So 02.10.2011
Autor: fred97

Es ex. also ein Intervall [mm] U_0 [/mm] mit [mm] x_0 \in U_0 [/mm] und eine stetig db Funktion y: [mm] U_0 \to \IR [/mm] mit

                F(x,y(x))= [mm] \int_{y_{0}}^{y(x)} \frac{1}{f_{2}} [/mm] - [mm] \int_{x_{0}}^{x}f_{1} [/mm] =0 für alle x [mm] \in U_0. [/mm]

Jetzt differenzieren !

FRED

Bezug
                
Bezug
Gleichung implizit lokal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:21 So 02.10.2011
Autor: kushkush

Hallo,


> differenziere


dann erhalte ich:

                 [mm] $\frac{\partial F(x,y(x)) }{\partial y} [/mm] = [mm] \frac{1}{f_{2}(y(x))}$ [/mm]
                
                 [mm] $\frac{\partial F(x,y(x))}{\partial x } [/mm] = [mm] -f_{1}(x)$ [/mm]


damit folgt dann für $y'(x) = - [mm] (\frac{\partial F(x,y(x))}{\partial y})^{-1} (\frac{\partial F(x,y(x))}{\partial x }) [/mm] = [mm] -f_{1}(x)f_{2}(y(x))$ [/mm]


Ist dadurch die Aufgabe gelöst??

> FRED

Vielen Dank!!


Gruss
kushkush


Bezug
                        
Bezug
Gleichung implizit lokal: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 So 02.10.2011
Autor: MathePower

Hallo kushkush,

> Hallo,
>  
>
> > differenziere
>
>
> dann erhalte ich:
>
> [mm]\frac{\partial F(x,y(x)) }{\partial y} = \frac{1}{f_{2}(y(x))}[/mm]
>  
>                  
> [mm]\frac{\partial F(x,y(x))}{\partial x } = -f_{1}(x)[/mm]
>  
>
> damit folgt dann für [mm]y'(x) = - (\frac{\partial F(x,y(x))}{\partial y})^{-1} (\frac{\partial F(x,y(x))}{\partial x }) = -f_{1}(x)f_{2}(y(x))[/mm]
>  


Du brauchst die Eigenschaft, daß [mm]f_{2}\left(y\left(x_{0}}\right)\right) \not= 0[/mm].
Dann kannst Du nach y' auflösen.

Hier muss doch stehen:

[mm]y'(x) = - (\frac{\partial F(x,y(x))}{\partial y})^{-1} (\frac{\partial F(x,y(x))}{\partial x }) = \blue{+}f_{1}(x)f_{2}(y(x))[/mm]


>
> Ist dadurch die Aufgabe gelöst??
> > FRED
>  
> Vielen Dank!!
>  
>
> Gruss
>  kushkush

>


Gruss
MathePower  

Bezug
                                
Bezug
Gleichung implizit lokal: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:48 So 02.10.2011
Autor: kushkush

Hallo Mathepower,



> hier muss stehen



> Gruss Mathepower

Vielen Dank!!!

Gruss
kushkush

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]