matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungGleichsetzung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Gleichsetzung
Gleichsetzung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichsetzung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:41 Sa 13.03.2010
Autor: yuppi

Hallo ich habe beide Stammfunktionen gleichgesetzt um t0 zu ermitteln.

Komme hier leider nicht weiter. Bin echt durcheinander wie ich das jetzt gleichsetzen soll. Bitte um Korrektur und Weiterrechnung, wie das gehen könnte

[Dateianhang nicht öffentlich]

Gruß

yuppi

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Gleichsetzung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Sa 13.03.2010
Autor: ChopSuey

Hi,

$\ [mm] x^2-y^2 [/mm] = (x-y)(x+y) $

Hilft das?
Gruß
ChopSuey

Bezug
                
Bezug
Gleichsetzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 Sa 13.03.2010
Autor: yuppi

Das ist ja einfach . Bei mir noch die Brüche dabei...

Bei dir kommt 0=xy-yx raus

Also eigentlich 0

Aber tut mir leid dass hilft mir nicht wirklich.



Bezug
                        
Bezug
Gleichsetzung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Sa 13.03.2010
Autor: ChopSuey

Hi,


$\ [mm] \frac{1}{3}t(a_2 [/mm] - [mm] a_1) [/mm] = [mm] (a_2 [/mm] - [mm] a_1)(a_2 +a_1) [/mm] $
$\ [mm] \gdw [/mm] t = [mm] 3(a_2 +a_1) [/mm] $

Gruß
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]