matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitGleichmässige Stetigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - Gleichmässige Stetigkeit
Gleichmässige Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gleichmässige Stetigkeit: Problem
Status: (Frage) beantwortet Status 
Datum: 10:57 Sa 30.10.2010
Autor: Babybel73

Hallo!
Kann mir jemand anhand folgendenden Beispiels zeigen, was wie man die gleichmässige resp. die nicht gleichmässige Stetigkeit zeigt??

Bsp.:
x [mm] \mapsto [/mm] 1/x auf (0,1)

Die Definition der gleichmässigen Stetigkeit ist ja:
[mm] \forall \varepsilon [/mm] > 0 [mm] \exists \delta [/mm] > 0 [mm] \forall [/mm] x,y [mm] \in [/mm] D: [mm] (|x-x'|)<\delta \Rightarrow |f(x)-f(x')|<\varepsilon [/mm]
Die Umkehrung davon lautet:
[mm] \exists \varepsilon [/mm] > 0 [mm] \forall \delta [/mm] > 0 [mm] \exists [/mm] x,y [mm] \in [/mm] D: [mm] (|x-x'|)<\delta \wedge |f(x)-f(x')|\ge\varepsilon [/mm]

Wie kann ich nun vorgehen???

Danke für eure Hilfe!

Liebe Grüsse

        
Bezug
Gleichmässige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:55 Sa 30.10.2010
Autor: fred97

Anleitung:


Nimm an, f wäre glm. stetig. Zu [mm] \varepsilon [/mm] =1 ex. dann ein [mm] \delta [/mm] >0 mit der einschlägigen Eigenschaft.

Nimm x in (0,1) und setze x'=x [mm] +\delta/2 [/mm]

Berechne  damit konkret |f(x)-f(x')|

Dann gilt also |f(x)-f(x')|<1

Nun lasse mal x gegen 0 gehen.

FRED

Bezug
                
Bezug
Gleichmässige Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:19 Sa 30.10.2010
Autor: Babybel73

Hallo Fred

Wieso wählst du denn [mm] \varepsilon=1?? [/mm] Könnte das auch 2 oder 0.5 oder so sein?? Und wieso wählst du [mm] x'=x+\delta/2?Könnte [/mm] ich dies auch anders wählen??
Und |f(x)-f(x')| = | [mm] (1/x)-(1/(x+\delta/2)|, [/mm] wie soll ich dies nun konkret berechnen und wiso folgt dann, dass dies kleiner ist als [mm] \varepsilon. [/mm] Und wieso muss ich nun das ganze gegen 0 gehen lassen (Davon steht ja nichts in der Definition!???)???

Bezug
                        
Bezug
Gleichmässige Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Sa 30.10.2010
Autor: fred97


> Hallo Fred
>  


f ist nicht glm. stetig auf (0,1) ! Deswegen Wideerspruchsbeweis


> Wieso wählst du denn [mm]\varepsilon=1??[/mm] Könnte das auch 2
> oder 0.5 oder so sein?? Und wieso wählst du
> [mm]x'=x+\delta/2?Könnte[/mm] ich dies auch anders wählen??
>  Und |f(x)-f(x')| = | [mm](1/x)-(1/(x+\delta/2)|,[/mm] wie soll ich
> dies nun konkret berechnen und wiso folgt dann, dass dies
> kleiner ist als [mm]\varepsilon.[/mm] Und wieso muss ich nun das
> ganze gegen 0 gehen lassen (Davon steht ja nichts in der
> Definition!???)???


Antwort auf all diese Fragen: weil der Widerspruchsbeweis damit funktioniert


FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]