matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikGesetz der großen Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Gesetz der großen Zahlen
Gesetz der großen Zahlen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gesetz der großen Zahlen: Aufgabe
Status: (Frage) überfällig Status 
Datum: 22:20 So 13.05.2007
Autor: kittycat

Aufgabe
Es sei [mm] (X_{n} [/mm] : n [mm] \in \IN) [/mm] eine Folge von Zufallsvariablen auf einem Wahrscheinlichkeitsraum (omega, [mm] \mathcal{A}, \mathcal{P}). [/mm] Man zeige: Gilt [mm] sup_{n \in \IN} var[X_{n}]<\infty [/mm] und existiert ein [mm] n_{0} \in \IN [/mm] mit [mm] Cov(X_{k},X_{l})=0 [/mm] für [mm] |k-l|\ge n_{0} [/mm] , so folgt:
[mm] \bruch{1}{n} \summe_{k=1}^{n}(X_{k} [/mm] - [mm] E[X_{k}]) \overrightarrow{p} [/mm] 0.

Hallo Mathefreunde,
kann mir jemand bei dieser äußerst formalen Aufgabe weiterhelfen oder zumindest ein paar Tips geben. Ich bin für jeden Tip oder jede Idee dankbar.
Lg kittycat

p.s.: Das muss wohl irgendetwas mit dem Gesetz der schwachen Zahlen zu tun haben?!?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Gesetz der großen Zahlen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Do 17.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]