matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteGeschlossene Formel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Eigenwerte" - Geschlossene Formel
Geschlossene Formel < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geschlossene Formel: "Idee"
Status: (Frage) beantwortet Status 
Datum: 20:26 Mo 25.06.2007
Autor: mariluz

Aufgabe
Sei [mm] (x_{n})_{n\in\IN} [/mm] die Folge reeller Zahlen, die rekursiv definiert ist durch:
[mm] x_{1}:=1, x_{2}:=1, x_{n+2}:=x_{n+1}+x_{n} \forall n\in\IN [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt:

Wie kann ich finden eine geschlossene Formel für [mm] x_{n} [/mm] von der Form

                           [mm] x_{n}=a(\lambda_{1})^n+b(\lambda_{2})^n [/mm]

Sollen nicht die [mm] \lambda_{1} [/mm] und [mm] \lambda_{2} [/mm] die Eigenwerte sein, wobei [mm] \lambda_{1}=[1+(5)^1/2]/2 [/mm] und [mm] \lambda_{2}=[1-(5)^1/2]/2? [/mm]

        
Bezug
Geschlossene Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:52 Mo 25.06.2007
Autor: felixf

Hallo Mariluz!

> Sei [mm](x_{n})_{n\in\IN}[/mm] die Folge reeller Zahlen, die
> rekursiv definiert ist durch:
>  [mm]x_{1}:=1, x_{2}:=1, x_{n+2}:=x_{n+1}+x_{n} \forall n\in\IN[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt:
>  
> Wie kann ich finden eine geschlossene Formel für [mm]x_{n}[/mm] von
> der Form
>  
> [mm]x_{n}=a(\lambda_{1})^n+b(\lambda_{2})^n[/mm]

Schreib doch mal eine Formel [mm] $(x_{n+1}, x_n)^t [/mm] = A [mm] (x_n, x_{n-1})^t$ [/mm] auf mit einer $2 [mm] \times [/mm] 2$-Matrix $A$.

> Sollen nicht die [mm]\lambda_{1}[/mm] und [mm]\lambda_{2}[/mm] die Eigenwerte
> sein,

Es sind die Eigenwerte der Matrix $A$.

> wobei [mm]\lambda_{1}=[1+(5)^1/2]/2[/mm] und
> [mm]\lambda_{2}=[1-(5)^1/2]/2?[/mm]  

Das kann wohl sein. Stell doch erstmal die Matrix $A$ auf. Du kannst jetzt [mm] $(x_{n+1}, x_n)^t [/mm] = A [mm] (x_n, x_{n-1})^t [/mm] = [mm] A^2 (x_{n-1}, x_{n-2}) [/mm] = [mm] \dots$ [/mm] schreiben. Druecke hiermit mal [mm] $(x_{n+1}, x_n)$ [/mm] durch $A$ und [mm] $(x_1, x_2)$ [/mm] aus.

Als naechstes diagonalisierst du die Matrix und berechnest insbesondere die Transformationsmatrix und deren Invereses. Kannst du damit die eben erhaltende Gleichung vereinfachen? Oder sogar eine explizite Formel fuer [mm] $x_n$ [/mm] herleiten?

Wenn du nicht weiterkommst, schreib erstmal hier hin was du gemacht/herausgefunden hast.

LG Felix


Bezug
                
Bezug
Geschlossene Formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:57 Di 26.06.2007
Autor: mariluz

vielen vielen Dank!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]