matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenEigenwertproblemeGeschgorin-Kreise
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Eigenwertprobleme" - Geschgorin-Kreise
Geschgorin-Kreise < Eigenwertprobleme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geschgorin-Kreise: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:22 Mi 23.11.2011
Autor: jebote

Aufgabe
Zeigen Sie, dass alle Eigenwerte einer Matrix A [mm] \in \IR^{n,n} [/mm] in der Vereinigung der sogenannten Gerschgorin-Kreise [mm] K_{i}=\{z\in \IC: |z-a_{ii}|\le \summe_{j=i,j\not= i}^{n}|a_{ij}\}, [/mm] i=1,...,n liegen.
(Hinweis: Betrachten Sie zu gegebenem Eigenwert [mm] \lambda [/mm] einen Eigenvektor x mit normierter maximaler Komponente [mm] |x_{i}|=1.) [/mm]

Keine Ahnung wie ich hier den Ansatz wählen soll.
Ich habe von diesen Kreise noch nie gehört, wäre nett, wenn mir einer einen Tipp geben kann.
Danke im Voraus.

Grüße

        
Bezug
Geschgorin-Kreise: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Mi 23.11.2011
Autor: wieschoo


> Zeigen Sie, dass alle Eigenwerte einer Matrix A [mm]\in \IR^{n,n}[/mm]
> in der Vereinigung der sogenannten Gerschgorin-Kreise
> [mm]K_{i}=\{z\in \IC: |z-a_{ii}|\le \summe_{j=i,j\not= i}^{n}|a_{ij}\},[/mm]
> i=1,...,n liegen.
>  (Hinweis: Betrachten Sie zu gegebenem Eigenwert [mm]\lambda[/mm]
> einen Eigenvektor x mit normierter maximaler Komponente
> [mm]|x_{i}|=1.)[/mm]
>  Keine Ahnung wie ich hier den Ansatz wählen soll.
>  Ich habe von diesen Kreise noch nie gehört, wäre nett,
> wenn mir einer einen Tipp geben kann.
>  Danke im Voraus.

Man nimmt erst einmal alles, was man hat:

Man hat einen Eigenwert [mm]\lambda\in\IC[/mm] von einer Matrix [mm]A=(a_{ij})_{i,j=1,\ldots,n}[/mm]. Zum Eigenwert [mm]\lambda[/mm] gibt es auch einen Eigenvektor [mm]\vec{v}=\vektor{v_1\\ \vdots\\ v_n}[/mm] ([mm]\neq \vec{0}[/mm]!)

weitere Schritte:
- betragsgrößten Eintrag [mm]v_r[/mm] nehmen
- weiteren Eigenvektor [mm]v'\;[/mm] zum Eigenwert [mm]\lambda[/mm] konstruieren, wobei bei [mm]v'\;[/mm] alle Einträge betragsmäßig kleiner _____ sind
- Gleichung aus Matrix, Eigenvektor, Eigenwert aufstellen
- davon die r-te Zeile betrachten
- Dreiecksungleichung anwenden
- sich freuen




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]