matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenEigenwertproblemeGerschgorin Kreise
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Eigenwertprobleme" - Gerschgorin Kreise
Gerschgorin Kreise < Eigenwertprobleme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerschgorin Kreise: Rückfrage Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:42 Fr 24.02.2012
Autor: bonzai0710

Aufgabe
Man verwende Gerschgorin Kreisscheiben um die Lage der Eigenwerte der folgenden Matrizen anzugeben.
A = [mm] \pmat{ 3 & -\bruch{1}{2} & -\bruch{1}{3}& 0 \\ 0 & 6 & 1 & 0 \\ \bruch{1}{3} & -\bruch{1}{3} & 5 & \bruch{1}{3} \\ -\bruch{1}{2} & \bruch{1}{4} & -\bruch{1}{4} & 4} [/mm]



[mm] r_{1} [/mm] = [mm] \bruch{5}{6} [/mm] = 0,833
[mm] r_{2} [/mm] = 1
[mm] r_{3} [/mm] = 1
[mm] r_{4} [/mm] = 1

[mm] c_{1} [/mm] = [mm] \bruch{5}{6} [/mm] = 0,833
[mm] c_{2} [/mm] = [mm] \bruch{13}{12} [/mm] = 1,0833
[mm] c_{3} [/mm] = [mm] \bruch{19}{12} [/mm] = 1,5833
[mm] c_{4} [/mm] = [mm] \bruch{1}{3} [/mm] = 0,3333

[mm] R_{1} [/mm] = [mm] \{z\in\IC ||z-3| \le 0,833 \} [/mm]
[mm] R_{2} [/mm] = [mm] \{z\in\IC ||z-6| \le 1 \} [/mm]
[mm] R_{3} [/mm] = [mm] \{z\in\IC ||z-5| \le 1 \} [/mm]
[mm] R_{4} [/mm] = [mm] \{z\in\IC ||z-4| \le 1 \} [/mm]

[mm] C_{1} [/mm] = [mm] \{z\in\IC ||z-3| \le 0,833 \} [/mm]
[mm] C_{2} [/mm] = [mm] \{z\in\IC ||z-6| \le 1,0833 \} [/mm]
[mm] C_{3} [/mm] = [mm] \{z\in\IC ||z-5| \le 1,5833 \} [/mm]
[mm] C_{4} [/mm] = [mm] \{z\in\IC ||z-4| \le 0,3333 \} [/mm]

Die Kreise R 1-4 sind nicht voneinander disjunkt daher [mm] R_{1} \cup R_{2} \cup R_{3} \cup R_{4} [/mm] Hier liegen 4 Eigenwerte Weil alle kreise liegen au der linie und überschneiden sich. Keiner is disjunkt von der Vereinigung der anderen.

Die Kreise c 1-4 sind nicht voneinander disjunkt daher [mm] C_{1} \cup C_{2} \cup C_{3} \cup C_{4} [/mm] Hier liegen 4 Eigenwerte Weil alle kreise liegen au der linie und überschneiden sich. Keiner is disjunkt von der Vereinigung der anderen.

so jetzt noch die frage ^^ Darf ich das so machen? stimmt das so oder hab ich da was falsch gemacht?

mfg
bonzai


        
Bezug
Gerschgorin Kreise: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 Fr 24.02.2012
Autor: MathePower

Hallo bonzai0710,


> Man verwende Gerschgorin Kreisscheiben um die Lage der
> Eigenwerte der folgenden Matrizen anzugeben.
>  A = [mm]\pmat{ 3 & -\bruch{1}{2} & -\bruch{1}{3}& 0 \\ 0 & 6 & 1 & 0 \\ \bruch{1}{3} & -\bruch{1}{3} & 5 & \bruch{1}{3} \\ -\bruch{1}{2} & \bruch{1}{4} & -\bruch{1}{4} & 4}[/mm]
>  
>
> [mm]r_{1}[/mm] = [mm]\bruch{5}{6}[/mm] = 0,833
>  [mm]r_{2}[/mm] = 1
>  [mm]r_{3}[/mm] = 1
>  [mm]r_{4}[/mm] = 1
>  
> [mm]c_{1}[/mm] = [mm]\bruch{5}{6}[/mm] = 0,833
>  [mm]c_{2}[/mm] = [mm]\bruch{13}{12}[/mm] = 1,0833
>  [mm]c_{3}[/mm] = [mm]\bruch{19}{12}[/mm] = 1,5833
>  [mm]c_{4}[/mm] = [mm]\bruch{1}{3}[/mm] = 0,3333
>  
> [mm]R_{1}[/mm] = [mm]\{z\in\IC ||z-3| \le 0,833 \}[/mm]
>  [mm]R_{2}[/mm] = [mm]\{z\in\IC ||z-6| \le 1 \}[/mm]
>  
> [mm]R_{3}[/mm] = [mm]\{z\in\IC ||z-5| \le 1 \}[/mm]
>  [mm]R_{4}[/mm] = [mm]\{z\in\IC ||z-4| \le 1 \}[/mm]
>  
> [mm]C_{1}[/mm] = [mm]\{z\in\IC ||z-3| \le 0,833 \}[/mm]
>  [mm]C_{2}[/mm] = [mm]\{z\in\IC ||z-6| \le 1,0833 \}[/mm]
>  
> [mm]C_{3}[/mm] = [mm]\{z\in\IC ||z-5| \le 1,5833 \}[/mm]
>  [mm]C_{4}[/mm] = [mm]\{z\in\IC ||z-4| \le 0,3333 \}[/mm]
>  
> Die Kreise R 1-4 sind nicht voneinander disjunkt daher
> [mm]R_{1} \cup R_{2} \cup R_{3} \cup R_{4}[/mm] Hier liegen 4
> Eigenwerte Weil alle kreise liegen au der linie und
> überschneiden sich. Keiner is disjunkt von der Vereinigung
> der anderen.
>  
> Die Kreise c 1-4 sind nicht voneinander disjunkt daher
> [mm]C_{1} \cup C_{2} \cup C_{3} \cup C_{4}[/mm] Hier liegen 4
> Eigenwerte Weil alle kreise liegen au der linie und
> überschneiden sich. Keiner is disjunkt von der Vereinigung
> der anderen.
>  
> so jetzt noch die frage ^^ Darf ich das so machen? stimmt
> das so oder hab ich da was falsch gemacht?
>  


Es ist doch so, daß alle Eigenwerte einer Matrix A
in der Vereinigung der Gerschgorin-Kreise liegen.

Die Aufgabe ist richtig [ok].


> mfg
>  bonzai

>


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]