matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenBauingenieurwesenGerinnehydraulik Normalhöhe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Bauingenieurwesen" - Gerinnehydraulik Normalhöhe
Gerinnehydraulik Normalhöhe < Bauingenieurwesen < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Bauingenieurwesen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerinnehydraulik Normalhöhe: Auflösen nach h
Status: (Frage) beantwortet Status 
Datum: 10:34 Di 26.06.2018
Autor: Matze80

Aufgabe
Bestimmen Sie die Normalhöhe h im offenen Rechteckquerschnitt
Geg.: Stricklerbeiwert k, Breite b, Sohlgefälle I und Durchfluss Q
Ges.: h

Hallo,
Aus Q=v*A  und  v=k*(rhy^(2/3))*(I^(1/2))  und  A=h*b  mit  rhy=(h*b)/((2*h)+b)   folgt:

Q=k*(((h*b)/((2*h)+b))^(2/3))*(I^(1/2))*h*b

Wie kann ich das nach h= auflösen?

Mein TI-89 Titanium kann, wenn ich die Werte eingebe das Ergebnis berechnen. Nach h aufzulösen mit der solve() Funktion bringt jedoch nicht die gewünschte Lösung.
Sie lautet:
[mm] 1/(b^3)*(I^{3/2})*k^3 [/mm] = 0  ODER  
[mm] h*(h^9*b^7*I^3*k^6-2*Q^6)=b*Q^6 [/mm]

Da kann ich aber beim besten Willen nichts mit anfangen.

Von Hand habe ich den Term in ein Polynom 5. Grades umgerechnet:
[mm] h^5 [/mm] - [mm] (Q/(k*(I^{1/2})*b))^3*((2*h/b)+1)^{1/2} [/mm] = 0

Wie kann ich nun h berechnen? Ich denke einfach die Nullstellen des Polynoms berechnen oder approximieren. Ich weiss aber nicht mehr wie hier vorzugehen ist.

Ich bin dankbar für jeglichen Gedankenanstoß.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gerinnehydraulik Normalhöhe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:59 Di 26.06.2018
Autor: Diophant

Hallo,

> Aus Q=v*A und v=k*(rhy^(2/3))*(I^(1/2)) und A=h*b mit
> rhy=(h*b)/((2*h)+b) folgt:

>

> Q=k*(((h*b)/((2*h)+b))^(2/3))*(I^(1/2))*h*b

>

> Wie kann ich das nach h= auflösen?

>

ist das so gemeint:

[mm]Q= \sqrt[3]{\left ( \frac{h*b}{2h+b} \right )^2}*\sqrt{I}*h*b[/mm]

Für den Fall würde es in der Tat auf eine algebraische Gleichung 5. Ordnung hinauslaufen, die man i.a. nicht exakt auflösen kann.

> Mein TI-89 Titanium kann, wenn ich die Werte eingebe das
> Ergebnis berechnen. Nach h aufzulösen mit der solve()
> Funktion bringt jedoch nicht die gewünschte Lösung.

Dazu muss man wissen, dass man algebraische Gleichungen ab der 5. Ordnung i.a. nicht auflösen kann, also kann es auch ein CAS nicht.

> Sie lautet:
> [mm]1/(b^3)*(I^{3/2})*k^3[/mm] = 0 ODER
> [mm]h*(h^9*b^7*I^3*k^6-2*Q^6)=b*Q^6[/mm]

>

Das ist so nicht nachvollziehbar.

> Von Hand habe ich den Term in ein Polynom 5. Grades
> umgerechnet:
> [mm]h^5[/mm] - [mm](Q/(k*(I^{1/2})*b))^3*((2*h/b)+1)^{1/2}[/mm] = 0

>

Das kann so nicht stimmen (außerdem ist das überhaupt kein Polynom auf der linken Seite, wegen der rationalen Potenz).

> Wie kann ich nun h berechnen? Ich denke einfach die
> Nullstellen des Polynoms berechnen oder approximieren. Ich
> weiss aber nicht mehr wie hier vorzugehen ist.

So wie du es gepostet hast, geht es nur näherungsweise.


Gruß, Diophant 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Bauingenieurwesen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]