matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenGeradengleichung aus Grundriss
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Geraden und Ebenen" - Geradengleichung aus Grundriss
Geradengleichung aus Grundriss < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geradengleichung aus Grundriss: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Mi 23.04.2008
Autor: entchen

Aufgabe
[mm]t_3[/mm] ist Grundriss, [mm]t_1[/mm] ist Aufriss der Gerade t. Gib eine Gleichung von t an.
[mm]t_1:\vec{X}= \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}+\lambda \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}[/mm]
[mm]t_3:\vec{X}= \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}+\mu \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}[/mm]
Zeichnung im Koordinatensystem!

Hallo! Meine Schwester (12. Klasse) kam gerade mit dieser Aufgabe zu mir.
Also die Zeichnung im KoSy bekomme ich hin. Ich hoffe dass das so stimmt: von der den beiden Geraden aus in die "3." Richtung verlängert und die Schnittpunkte dieser Verlängerungen sind dann zwei Punkte auf t.
Für die Gleichung habe ich einfach die Koordinaten der Schnittpunkte verwendet und komme auf
[mm]t:\vec{X}= \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}+\nu \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}[/mm]
Stimmt das? und Gibt es vielleicht eine analytische Lösung? Mir ist leider bisher nichts dazu eingefallen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Geradengleichung aus Grundriss: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 Mi 23.04.2008
Autor: MathePower

Hallo entchen,

[willkommenmr]

> [mm]t_3[/mm] ist Grundriss, [mm]t_1[/mm] ist Aufriss der Gerade t. Gib eine
> Gleichung von t an.
>  [mm]t_1:\vec{X}= \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}+\lambda \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}[/mm]
>  
> [mm]t_3:\vec{X}= \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}+\mu \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}[/mm]
>  
> Zeichnung im Koordinatensystem!
>  Hallo! Meine Schwester (12. Klasse) kam gerade mit dieser
> Aufgabe zu mir.
>  Also die Zeichnung im KoSy bekomme ich hin. Ich hoffe dass
> das so stimmt: von der den beiden Geraden aus in die "3."
> Richtung verlängert und die Schnittpunkte dieser
> Verlängerungen sind dann zwei Punkte auf t.
>  Für die Gleichung habe ich einfach die Koordinaten der
> Schnittpunkte verwendet und komme auf
>  [mm]t:\vec{X}= \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}+\nu \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}[/mm]
>  
> Stimmt das? und Gibt es vielleicht eine analytische Lösung?
> Mir ist leider bisher nichts dazu eingefallen.

Einerseits weisst Du, daß die Gerade so aussehen muss:

[mm] g_{1}:\vec{X}= \begin{pmatrix} a_{1} \\ 1 \\ 1 \end{pmatrix}+\lambda \begin{pmatrix} b_{1} \\ 2 \\ 1 \end{pmatrix} [/mm]

Andererseits soll dies identisch sein mit der Geraden [mm]g_{3}[/mm]:

[mm] g_{3}:\vec{X}= \begin{pmatrix} 1 \\ 2 \\ a_{3} \end{pmatrix}+\mu \begin{pmatrix} 1 \\ -1 \\ b_{3} \end{pmatrix} [/mm]

Durch gleichsetzen erhält man:

[mm]\begin{pmatrix} a_{1} \\ 1 \\ 1 \end{pmatrix}+\lambda \begin{pmatrix} b_{1} \\ 2 \\ 1 \end{pmatrix}= \begin{pmatrix} 1 \\ 2 \\ a_{3} \end{pmatrix}+\mu \begin{pmatrix} 1 \\ -1 \\ b_{3} \end{pmatrix} [/mm]

Daraus ergeben sich 3 Gleichungen:

[mm]\left(1\right) \ a_{1}+\lambda*b_{1}=1+\mu*1[/mm]
[mm]\left(2\right) \ 1+\lambda*2=2-\mu*1[/mm]
[mm]\left(3\right) \ 1+\lambda=a_{3}+\mu*b_{3}[/mm]

Gleichung (2) wird nach [mm]\mu[/mm] aufgelöst.

Dies wird nun in eine der Gleichungen (1) oder (3) eingesetzt und dann ein []Koeffizientenvergleich durchgeführt.

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Gruß
MathePower

Bezug
                
Bezug
Geradengleichung aus Grundriss: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:25 Mi 23.04.2008
Autor: entchen

Oh Mann, da hab ich irgendwie den Wald vor lauter Bäumen nicht mehr gesehen!

Vielen, vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]