matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenGeraden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Geraden und Ebenen" - Geraden
Geraden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geraden: parallel oder identisch?
Status: (Frage) beantwortet Status 
Datum: 15:03 Sa 24.02.2007
Autor: jane882

Aufgabe
...

Wenn ich 2 Geraden habe, linear abhängig, und will wissen ob sie parallel oder identisch sind, was mache ich dann?

Parallel wären sie ja wenn die Richtungvektoren gleich oder ein Vielfaches voneinander bilden würden.

Wenn sie das nicht wären, wär die Geraden dann automatisch identisch? Oder kann man das auch noch irgendwie berechnen? Mit Punktprobe oder so?

Danke:)

        
Bezug
Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Sa 24.02.2007
Autor: Trampeltier

Hallo,
du kannst di Identität sehr leicht nachprüfen. Du musst in beide Gleichungen nur den selben X-Wert einsetzen, wenn du nun den gleichen Y-Wert herausbekommst, dann wiederholst du das ganze noch einmal, machst es also mit 2 Punkten, denn eine Gerade ist ja durch 2 Punkte eindeutig bestimmt.
So würde ich die Kontrolle machen ;)
Gruß Trampel

Bezug
                
Bezug
Geraden: einsetzen
Status: (Frage) beantwortet Status 
Datum: 15:23 Sa 24.02.2007
Autor: jane882

Aufgabe
...

wenn ich jetzt die gerade hätte:

(1 2 3) + Lamnda (-1 3 1)
und

( 2 4 0)+ Mü (2 -6 -2)

Dann muss ich für Lamnda und Mü z.b. einmal 2 einsetzen und einmal 3 ?

x= 2
Punkt A( -1/8/5)
Punkt B( 6/8/-4)

x= 3
Punkt A(-2/11/6)
Punkt B( 8 /-14/-6)

so??? und nun?

Bezug
                        
Bezug
Geraden: Stützvektor verwenden
Status: (Antwort) fertig Status 
Datum: 15:33 Sa 24.02.2007
Autor: Loddar

Hallo Jane!


Wenn Du diese beiden Geraden gegeben und bereits festgestellt hast, dass die Richtungsvektoren linear abhängig sind, setzt Du einfach den Stützvektor der einen Gerade in die Geradengleichung der anderen Geraden ein:

[mm] $g_1 [/mm] \ : \ [mm] \vec{x} [/mm] \ = \ [mm] \blue{\vektor{1\\2\\3}+\lambda*\vektor{-1\\3\\1}}$ [/mm]

[mm] $g_2 [/mm] \ : \ [mm] \vec{x} [/mm] \ = \ [mm] \red{\vektor{2\\4\\0}}+ \mu*\vektor{2\\-6\\-2}$ [/mm]



[mm] $\Rightarrow$ $\red{\vektor{2\\4\\0}} [/mm] \ = \ [mm] \blue{\vektor{1\\2\\3}+\lambda*\vektor{-1\\3\\1}}$ [/mm]

Löse hier nun die 3 Gleichungen nach [mm] $\lambda [/mm] \ = \ ...$ um. Solltest Du 3-mal dasselbe Ergebnis erhalten, liegt der Punkt [mm] $A_2 [/mm] \ [mm] \left(2;4;0\right)$ [/mm] auch auf der Geraden [mm] $g_1$ [/mm] und beide Geraden [mm] $g_1$ [/mm] und [mm] $g_2$ [/mm] sind identisch.

Bei unterschiedlichen [mm] $\lambda$-Werten [/mm] sind die beiden Geraden nicht identisch; sondern "nur" parallel.


Gruß
Loddar


Bezug
                                
Bezug
Geraden: danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:25 Sa 24.02.2007
Autor: jane882

danke:) das habe ich verstanden! kannst du mir vielleicht auch bei meiner anderen aufgaben (post: schnittpunkt) kurz helfen:(



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]