matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungGerade durch Fläche(n)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Gerade durch Fläche(n)
Gerade durch Fläche(n) < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gerade durch Fläche(n): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:25 Sa 20.01.2007
Autor: trination

Aufgabe
[mm] f(x)=x^2+2x+3 [/mm]
[mm] g(x)=-0,5x^2+0,5x+6 [/mm]

In welchem Verhältnis wird die eingeschlossene Fläche von der Geraden g geteilt, die durch die Schnittpunkte der beiden Graphen geht.

[Dateianhang nicht öffentlich]

[du kannst das Bild ganz leicht auch hier einfügen mit [img]1[/img], dann wirst du beim Speichern aufgefordert, das Bild hochzuladen.. informix]

Schnittpunkte sind:
[mm] s_{1}(-2;3) [/mm]
[mm] s_{2}(1;6) [/mm]

Nur wie mache ich jetzt weiter? Ich denke y=mx+n muss ich hier verwenden. Nur scheiterts eben an der Anwendung.

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
        
Bezug
Gerade durch Fläche(n): Antwort
Status: (Antwort) fertig Status 
Datum: 13:42 Sa 20.01.2007
Autor: GorkyPark

Hey Trination!

Also du suchst die Gerade g (wir sollten sie h nennen), da du schon eine Funktion g(x) hast.

h geht durch die beiden Schnittpunkte (-2/3) und (1/6). Die Gleichung für eine Gerade lautet, wie du richtig gesagt hast:

y = mx + b

Einsetzen:

3 = -2m +b

6 = m + b.

Das solltest du lösen können, dann hast du die Gerade.

Jetzt musst du noch die Flächen zwischen f(x) und h bzw. g(x) und h im Intervall [-2,1] berechnen und das machst du mit dem Integral.

Schau mal wie weit du kommst und frag dann wieder.

Mfg

GorkyPark

Bezug
                
Bezug
Gerade durch Fläche(n): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:44 Sa 20.01.2007
Autor: trination


> y = mx + b
>  
> Einsetzen:
>  
> 3 = -2m +b
>  
> 6 = m + b.


Wie kommst du auf die 6?  Ich hab dann ja noch "m" und "b" ...

Bezug
                        
Bezug
Gerade durch Fläche(n): Antwort
Status: (Antwort) fertig Status 
Datum: 14:00 Sa 20.01.2007
Autor: Steffi21

Hallo,
du setzt deine Schnittpunkte ein:

[mm] P_1(-2; [/mm] 3) also 3=m*(-2)+b
              3=-2m+b

[mm] P_2(1; [/mm] 6) also 6=m*1+b
             6=m+b

die Zahl 6 kommt von [mm] P_2 [/mm]

Steffi

Bezug
                                
Bezug
Gerade durch Fläche(n): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:06 Sa 20.01.2007
Autor: trination

y=x+5

hrhr

und wie bekomme ich jetzt das verhältnis raus?

Bezug
                                        
Bezug
Gerade durch Fläche(n): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:11 Sa 20.01.2007
Autor: trination

Ah einfach den Flächeninhalt berechnen usw..



Bezug
                                        
Bezug
Gerade durch Fläche(n): Antwort
Status: (Antwort) fertig Status 
Datum: 14:21 Sa 20.01.2007
Autor: Steffi21

Hallo,
zeichne in dein Bild noch die Gerade ein,
Ansatz für Fläche zwichen der nach unten geöffneten Parabel und der Gerade:

[mm] \integral_{-2}^{1}{-\bruch{1}{2}x^{2}+\bruch{1}{2}x+6-(x+5) dx} [/mm]

alle Klammern auflösen, integrieren, Grenzen einsetzen,

Steffi

Bezug
                                                
Bezug
Gerade durch Fläche(n): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:28 Sa 20.01.2007
Autor: trination

Jo bin selber noch draufgekommen.

1:2


danke, aber

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]