Geometrie (dreieck) < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:52 Do 24.03.2005 | Autor: | Kylie04 |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo!
Dieses Problem ist wirklich schwer, es wäre toll wenn ihr mir helfen könntet.
ABC ist ein rechtwinkliges ,gleichschenkliges Dreieck in A,und I ist die Mitte der Strecke [BC], also der Hypothenuse. Man wählt einen Punkt P beliebig auf der Hypothenuse (am besten oberhalb von I) und man konstruiert M auf [AB] und N auf [AC] so dass AMPN ein Rechteck ist. Dann verbindet man I mit N und M, dass es ein Dreieck ist. Man muss jetzt Beweisen, dass NMI ein Rechtwinkliges, Gleichschenkliges Dreieck ist.
Lösungsvorschlag:
Man könnte es mit dem Kongruenz-oder hnlichkeitssätzen beweisen,da die Dreiecke ja ähnlich sind.
Vielen Dank !
|
|
|
|
Hallo Kylie04
die Gleichschenkelig ergibt sich daraus
das die beiden schattierten 3ecke
kongruent, insbesondere also ihre
Hypothenusen gleich lang sind.
Die Rechtwinkeligkeit daraus daß
ihre kurzen Katheten, s/2 -d,
rechwinkelig aufeinander stehen und
damit auch ihre Hypothenusen.
[Dateianhang nicht öffentlich]
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:03 Do 24.03.2005 | Autor: | Kylie04 |
Vielen Dank für deine Hilfe!
So schnell wäre ich nicht darauf gekommen, dass man das über die kongruenten Dreiecke lösen kann. Das war wirklich ein guter Tip und ich konnte es jetzt lösen.
Gibt es eigentlich auch einen Namen für den Satz ,dass wenn die beiden Katheten rechtwinklig aufeinander stehen, auch die Hypothenusen das gleiche tun? Muss man das auch noch beweisen ?
Danke
|
|
|
|
|
Hi, Kylie,
das gilt nur hier, weil die beiden Dreiecke kongruent sind, demnach die beiden spitzen Winkel auch gleich sind und so zusammengesetzt werden können, dass ein 90°-Winkel rauskommt.
(Im rechtwinkligen Dreieck ist ja die Summe der beiden spitzen Winkel immer =90°).
Bei ähnlichen Dreiecken wär' das übrigens genauso.
Einen "Satz" habe ich dazu aber noch nicht gesehen.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:29 Fr 25.03.2005 | Autor: | Kylie04 |
Vielen dank an alle noch mal! Ich konnte diese Aufgabe endlich lösen.
In geometrie bin ich nicht immer so toll, aber eigentlich ist es nicht so schwer, wie die aufgabe gezeigt hat...man muss nur auf die richtigen Dinge achten..
|
|
|
|