matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRelationenGeometrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Relationen" - Geometrie
Geometrie < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geometrie: Idee
Status: (Frage) beantwortet Status 
Datum: 22:13 Mo 30.04.2012
Autor: Lovella

Aufgabe
hey ihr! Vllt könnt ihr mir ja helfen. G ist die Menge der Geraden im [mm] \IK^2 [/mm] :

$ [mm] G:=\Big\{[(a,b),\ (c,d)]\ |\ (a,b)\in \IK^2, (c,d)\in \IK^2 \setminus \{o\} \Big\}/{\sim} [/mm] $



Das $ [mm] \sim [/mm] $ ist allerdings niegends erklärt. Es steht nur noch da: $ [mm] g\sim [/mm] g'\ [mm] \iff\ (a,b)+\IK [/mm] (c,d)\ =\ [mm] (a',b')+\IK [/mm] (c',d') $


Was bedeutet also dieses $ [mm] /{\sim} [/mm] $ ?

EDIT: Könnte es sein, dass das $ [mm] /{\sim} [/mm] $ garantiert, dass $ G $, die Menge der Klassen ist, und in einer Klasse sind dann nur jeweils gleiche Geraden?


        
Bezug
Geometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 09:02 Di 01.05.2012
Autor: tobit09

Hallo Lovella,


> G ist die Menge der
> Geraden im [mm]\IK^2[/mm] :
>  
> [mm]G:=\Big\{[(a,b),\ (c,d)]\ |\ (a,b)\in \IK^2, (c,d)\in \IK^2 \setminus \{o\} \Big\}/{\sim}[/mm]
>  
>
> Das [mm]\sim[/mm] ist allerdings niegends erklärt. Es steht nur
> noch da: [mm]g\sim g'\ \iff\ (a,b)+\IK (c,d)\ =\ (a',b')+\IK (c',d')[/mm]

Hier soll offenbar [mm] $g,g'\in\Big\{[(a,b),\ (c,d)]\ |\ (a,b)\in \IK^2, (c,d)\in \IK^2 \setminus \{o\} \Big\}$ [/mm] mit $g=[(a,b),\ (c,d)]$ und $g'=[(a',b'),\ (c',d')]$ gelten. In dieser Situation soll [mm] $g\sim [/mm] g'$ gerade [mm] $(a,b)+\IK [/mm] (c,d)\ =\ [mm] (a',b')+\IK [/mm] (c',d')$ bedeuten.


> Was bedeutet also dieses [mm]/{\sim}[/mm] ?

G ist die Menge aller Äquivalenzklassen bzgl. [mm] $\sim$. [/mm]

> EDIT: Könnte es sein, dass das [mm]/{\sim}[/mm] garantiert, dass [mm]G [/mm],
> die Menge der Klassen ist, und in einer Klasse sind dann
> nur jeweils gleiche Geraden?

Ja. Die gleichen Geraden lassen sich durch verschiedene Paare $[(a,b),\ (c,d)]$ darstellen. Jede Äquivalenzklasse korrespondiert zu einer Geraden und besteht genau aus allen Paaren $[(a,b),\ (c,d)]$, die diese Gerade beschreiben.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]