matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungGeigerzähler
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitsrechnung" - Geigerzähler
Geigerzähler < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geigerzähler: Aufgabe 3
Status: (Frage) beantwortet Status 
Datum: 19:27 Mi 25.05.2016
Autor: MiguelVal

Aufgabe
Eine Probe Uran 238 enthält 10^21 Atome (ca. 0,4 Gramm). Die Wahrscheinlichkeit, dass ein bestimmtes
Atom innerhalb einer bestimmten Sekunde zerfällt beträgt 4,92 x 10^-18. Ein Geigerzähler ist auf die
Probe gerichtet und so eingestellt, dass er einen Zerfall in der Probe mit einer Wahrscheinlichkeit von
0,1% detektiert. Wie hoch ist die Wahrscheinlichkeit, dass in einer Sekunde genau vier Zerfallsprozesse detektiert werden?

Ich wollte versuchen die Aufgabe mittels der Poisson-Verteilung zu lösen.
P (k) = [mm] exp(-\lambda) \* \lambda^k/k! [/mm]

Dann wollte ich für k = 4000 die Wahrscheinlichkeit berechnen, da ja lediglich 1/1000 der Zerfälle detektiert werden.
Nun komme ich aber bei der Bestimmung von [mm] \lambda [/mm] nicht weiter. Ich habe [mm] \lambda [/mm] = n x p = 10^23 [mm] \* [/mm] 4,92 [mm] \* [/mm] 10^-18 = 4920.
Damit komme ich aber nicht weiter, da riesige Zahlen entstehen...
Bin mir auch insgesamt unsicher ob die Vorgehensweise korrekt ist?

        
Bezug
Geigerzähler: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Mi 25.05.2016
Autor: HJKweseleit

Wenn du einfach für die erste Sekunde alles mit den angegebenen Zahlen durchrechnest,kommst du auf 49,2 "Knackser". Du hast 1 % vergessen. Jetzt Poissonverteilung!
Bezug
                
Bezug
Geigerzähler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:49 Do 26.05.2016
Autor: MiguelVal

Kann ich folgendermaßen vorgehen:

Die Wahrscheinlichkeit, dass ein Atom zerfällt und dieser Zerfall detektiert wird als p = 4,92 * 10^-18 * 0,001 = 4.92 * [mm] 10^{-21} [/mm] angenommen.
Beide Ereignisse sind ja unabhängig voneinander.

Dies ergibt für [mm] \lambda [/mm] = n*p = 4,92.

daraus folgt:
P (k=4) = [mm] exp(-\lambda) [/mm] * [mm] \lambda^{4}/4! [/mm] = exp(-4,92) * [mm] 4,92^{4}/4! [/mm] = 0,178 = 17,8%

Bezug
                        
Bezug
Geigerzähler: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Do 26.05.2016
Autor: leduart

Hallo
nein p dass ein bestimmtes Atom in 1s  den GM Zähler kommt ist doch [mm] 4.92*10^{-18}/1000. [/mm]
fang damit an.
Gruß ledum

Bezug
                                
Bezug
Geigerzähler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:12 Do 26.05.2016
Autor: MiguelVal

p = 4,92 [mm] \* 10^{-18} \* [/mm] 0,001 = 4,92 [mm] \* 10^{-18}/1000, [/mm] oder? So habe ich es doch gemacht.

Bezug
                                        
Bezug
Geigerzähler: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Do 26.05.2016
Autor: leduart

Hallo
ich hatte auf den post davor geantwortet, ja du hast recht.
Gruß leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]