matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikGeburtstagswahrscheinlichkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stochastik" - Geburtstagswahrscheinlichkeit
Geburtstagswahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geburtstagswahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:08 Mo 13.06.2011
Autor: MathematikIstGut

Aufgabe
Hallo,

Ich habe da folgende Aufgabe gestellt bekommen:

1)Berechnen sie die Wahrscheinlichkeit, dass genau 3/4/5 Leute unter 20 Leuten am gleichen Tag Geburtstag haben.

2)Bestimmen sie die Wahrscheinlichkeit P, dass genau k Leute unter n Leuten
am gleichen Tag Geburtstag haben.

3)Bestimmen sie die Wahrscheinlichkeit, dass mind. 3/5/10 Leute am gleichen Tag Geburtstag haben.

Also ich habe mir folgendes überlegt:

1) Zunächst gibt es für den ersten 365 Auswahlmöglichkeiten , also [mm] \bruch{365}{365}, [/mm] der Zweite muss dann genau am selben Tag Geburtstag haben also [mm] \bruch{1}{365}, [/mm] der Dritte ebenso usw. Danach müssen die Anderen an anderen Tagen Geburtstag haben also: [mm] \bruch{364}{365},\bruch{363}{365} [/mm] bis hin zu [mm] \bruch{348}{365}. [/mm]
Jedoch gibt es ja dazu noch unterschiedliche Anordnungsmöglichkeiten also für den ersten 20,zweiten 19,dritten18 usw. also wäre das [mm] \bruch{20*19*18}{3} [/mm] oder [mm] \vektor{20 \\ 3} [/mm]

2) Dementsprechend würde doch gelten :
[mm] \bruch{\vektor{n \\ k} *365!}{365^n *(365-n+k-1)!} [/mm]

3) Ja also bei der Aufgabe würde ich jetzt die Wahrscheinlichkeiten für P(1) P(2) ausrechnen und dann das Gegenereignis bilden, aber da ich auch hier eine allgemeinte Formel aufstellen soll, weiß ich nicht weiter...


Ich hoffe ihr könnt meine Überlegungen bestätigen,ich hoffe sie sind nicht kompletter Humbug und ich wäre euch sehr verbunden, wenn ihr mir bei Aufgabe 3 helfen könntet.

Vielen Dank im Vorraus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Geburtstagswahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Mo 13.06.2011
Autor: Martinius

Hallo,

a) Es handelt sich hierbei um einen 20-stufigen Bernoulli-Versuch.

Erfolgswahrscheinlichkeit ist: [mm] p=\frac{1}{365} [/mm]

; Verlierer-Wahrscheinlichkeit ist.  [mm] (1-p)=\frac{364}{365} [/mm]


$P(X=3) = {20 [mm] \choose [/mm] 3} [mm] *\left( \frac{1}{365} \right)^3*\left( \frac{364}{365} \right)^{17}=0,00002238$ [/mm]



b) $P(X=k) = {n [mm] \choose [/mm] k} [mm] *\left( \frac{1}{365} \right)^k*\left( \frac{364}{365} \right)^{n-k}$ [/mm]


c) Hier bin ich mir nicht sicher.

$P(X [mm] \ge [/mm] 3) = 1- [mm] \frac{365!}{365^3*(365-3)!}$ [/mm]



LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]