matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenGaußsche Integralsatz in Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Gaußsche Integralsatz in Ebene
Gaußsche Integralsatz in Ebene < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gaußsche Integralsatz in Ebene: Äußere Normale
Status: (Frage) beantwortet Status 
Datum: 18:13 Sa 14.01.2006
Autor: Rinho

Ich beschäftige mich derzeit mit dem Integralsatz von Gauß in der Ebene, und bin dort auf den Begriff der "äußeren Normalen" gestoßen. Leider kann ich aus der Definition nicht ersehen, wie ich diese berechne bzw. darauf komme. Kann mir dort jemand weiterhelfen?

Der Integralsatz lautet (v die äußere Normale):

[mm]\integral_{B}^{}divf dxdy = \integral_{\partial B}^{}f*v ds = \integral_{\partial B}^{} f_{1} dy - \integral_{\partial B}^{} f_{2} dx[/mm]



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gaußsche Integralsatz in Ebene: Hinweis
Status: (Antwort) fertig Status 
Datum: 19:46 So 15.01.2006
Autor: MathePower

Hallo Rinho,

[willkommenmr]

> Ich beschäftige mich derzeit mit dem Integralsatz von Gauß
> in der Ebene, und bin dort auf den Begriff der "äußeren
> Normalen" gestoßen. Leider kann ich aus der Definition
> nicht ersehen, wie ich diese berechne bzw. darauf komme.
> Kann mir dort jemand weiterhelfen?
>  
> Der Integralsatz lautet (v die äußere Normale):
>  
> [mm]\integral_{B}^{}divf dxdy = \integral_{\partial B}^{}f*v ds = \integral_{\partial B}^{} f_{1} dy - \integral_{\partial B}^{} f_{2} dx[/mm]
>  

Ist

[mm] f(x,y)\; = \;\left( {f_1 \left( {x,\;y} \right),\;f_2 \left( {x,\;y} \right)} \right)^T [/mm]

ein Feld mit der Bogenlänge s als Parameter, dann ist

[mm] v\left( s \right)\; = \;\left( {\frac{{dy}} {{ds}},\; - \;\frac{{dx}} {{ds}}} \right)^T [/mm]

der äußere Einheitsnormalenvektor, der senkrecht auf dem Tangentenvektor [mm]t\left( s \right)\; = \;\left( {\frac{{dx}} {{ds}},\; \frac{{dy}}{{ds}}} \right)^T [/mm] steht.

Gruß
MathePower






Bezug
                
Bezug
Gaußsche Integralsatz in Ebene: danke sehr
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:49 Mo 16.01.2006
Autor: Rinho

vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]