matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieGaussche Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Gaussche Zahlen
Gaussche Zahlen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gaussche Zahlen: Frage zur Teilbarkeit/Normf.
Status: (Frage) beantwortet Status 
Datum: 19:55 Sa 30.03.2013
Autor: Marcel

Aufgabe
Hallo,

in den Gausschen Zahlen [mm] $\IZ[i]$ [/mm] gilt bekanntlich, dass, wenn $b$ durch $a$ teilbar ist, auch $N(b)$ durch $N(a)$ geteilt werden kann. Frage: Gilt auch die Umkehrung?

Hallo,

wegen der Multiplikativität ist ja $a | b [mm] \Rightarrow [/mm] N(a) | N(b)$ klar, wobei
die erste Teilbarkeit die in [mm] $\IZ[i]$ [/mm] und die zweite die in [mm] $\IN_0$ [/mm] meint.

Wie sieht's mit der Umkehrung aus? Ich dachte erst, ich hätte ein
Gegenbeispiel gefunden, habe aber dann beim Nachrechnen einen
Rechenfehler entdeckt. Ich habe ein wenig rumgespielt, und bisher
weder ein Beispiel noch einen Grund gefunden, warum
$$N(a) | N(b) [mm] \Rightarrow [/mm] a | b$$
nicht gelten soll. Gilt das vielleicht tatsächlich? Gibt es da einen Trick, um
das zu beweisen? Denn bei einem Beweisversuch per Kontraposition
komme ich nicht weiter. Und bei einem direkten Beweis
$$N(a) | N(b) [mm] \Rightarrow N(b)=m\,N(a)$$ [/mm]
muss ich ja nun zeigen, dass sich [mm] $m\,$ [/mm] mit einem $c [mm] \in \IZ[i]$ [/mm] als $N(c)$
darstellen läßt. Das bekomme ich gerade nicht konstruiert - ich denke aber,
dass es dabei auch nicht unwichtig ist, dass $N(a)$ und $N(b)$ jeweils die
Summe zweier Quadrate natürlicher Zahlen ist. Ich sehe aber nicht, wie
das hilft. Macht es dafür Sinn, mal zu versuchen
[mm] $$\{x^2+y^2:\;\;x,y \in \IZ\}$$ [/mm]
anders zu beschreiben?

Gruß,
  Marcel

        
Bezug
Gaussche Zahlen: Habe Gegenbeispiel gefunden
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:04 Sa 30.03.2013
Autor: Marcel

Hallo,

habe nun doch selbst ein (einfaches) Gegenbeispiel gefunden:
[mm] $2+3i\,$ [/mm] ist nicht durch $3+2i$ teilbar.

Gruß,
  Marcel

Bezug
                
Bezug
Gaussche Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:57 Sa 30.03.2013
Autor: Marcel

Aufgabe
In den Gausschen Zahlen $ [mm] \IZ[i] [/mm] $ gilt bekanntlich, dass, wenn $ b $ durch $ a $ teilbar ist, auch $ N(b) $ durch $ N(a) $ geteilt werden kann. Frage: Gilt auch die Umkehrung?

Obige Frage konnte ich mir mittlerweile ja bereits selbst beantworten. Nun
aber dennoch eine weitere Frage:
Gibt es vielleicht dennoch eine Möglichkeit, wie man aus der Teilbarkeit von
[mm] $N(b)\,$ [/mm] durch $N(a)$ erschließen kann, dass dann $a|b$ in [mm] $\IZ[i]$ [/mm] gilt?

Also wenn man neben [mm] $N(a)|N(b)\,$ [/mm]  noch etwas zusätzliches fordert, was
leicht zu überprüfen ist? Ist da jemanden etwas bekannt?

Gruß,
  Marcel

Bezug
                        
Bezug
Gaussche Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:47 So 31.03.2013
Autor: felixf

Moin Marcel!

> In den Gausschen Zahlen [mm]\IZ[i][/mm] gilt bekanntlich, dass, wenn [mm]b[/mm] [/i][/mm]
> [mm][i]durch [mm]a[/mm] teilbar ist, auch [mm]N(b)[/mm] durch [mm]N(a)[/mm] geteilt werden [/i][/mm]
> [mm][i]kann. Frage: Gilt auch die Umkehrung?[/i][/mm]
> [mm][i] Obige Frage konnte ich mir mittlerweile ja bereits selbst [/i][/mm]
> [mm][i]beantworten. Nun[/i][/mm]
> [mm][i] aber dennoch eine weitere Frage:[/i][/mm]
> [mm][i] Gibt es vielleicht dennoch eine Möglichkeit, wie man aus [/i][/mm]
> [mm][i]der Teilbarkeit von[/i][/mm]
> [mm][i] [mm]N(b)\,[/mm] durch [mm]N(a)[/mm] erschließen kann, dass dann [mm]a|b[/mm] in [mm]\IZ[i][/mm] [/i][/mm][/i][/mm]
> [mm][i][mm][i]gilt?[/i][/mm][/i][/mm]

Ja, z.B. wenn $b$ eine ganze Zahl in [mm] $\IZ$ [/mm] ist und die Exponenten der Primzahlen in $N(a)$ hoechstens halb so gross sind wie die in $N(b)$ (ausser bei Primteilern, die in [mm] $\IZ[i]$ [/mm] nicht in zwei nicht-konjugierte Primelemente aufspalten, bei denen ist nichts zu beachten).

Das Problem ist, dass die Norm nicht zwischen den verschiedenen Primelementen in [mm] $\IZ[i]$ [/mm] unterscheiden kann, die ueber einer Primzahl $p$ aus [mm] $\IZ$ [/mm] liegen. Genauer: es gibt drei Moeglichkeiten, wie eine Primzahl aus [mm] $\IZ$ [/mm] sich in [mm] $\IZ[i]$ [/mm] verhaelt. Sie kann weiter prim sein, sie kann das Quadrat eines Primelementes sein, oder das Produkt zweier nicht-konjugierter Primelemente. Der dritte Fall ist derjenige, bei dem du Probleme bekommst.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]