Funktionsgleichungsbestimmung < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Hallo erstmal,
ich habe ein Problem, da ich jetzt seit 6 Wochen mich wirklich gar nicht mehr mit Mathematik beschäftigt habe, habe ich nun das Problem das ich nicht mehr in das Thema reinfinde, daher hab ich mir gedacht, nachdem ich nun 1h lang gerätselt habe, die Frage nun hier zu stellen. Ich weiß die Frage verstößt im Prinzip gegen die Forenregeln, da ich keine eigenen Lösungansätze habe, aber mein Problem ist ja gerade eben das ich überhaupt nicht mehr annährend weiß wie :D
Ich müsste wissen wie man derartige Funktionen, anhand solcher Graphen bestimmt. Am besten wäre natürlich wenn mir jemand einen Teil der Aufgabe vorrechnen könnte. Danke schonmal im Vorraus.
[Dateianhang nicht öffentlich]
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:26 Mi 04.09.2013 | Autor: | M.Rex |
Hallo und
> Hallo erstmal,
> ich habe ein Problem, da ich jetzt seit 6 Wochen mich
> wirklich gar nicht mehr mit Mathematik beschäftigt habe,
> habe ich nun das Problem das ich nicht mehr in das Thema
> reinfinde, daher hab ich mir gedacht, nachdem ich nun 1h
> lang gerätselt habe, die Frage nun hier zu stellen. Ich
> weiß die Frage verstößt im Prinzip gegen die
> Forenregeln, da ich keine eigenen Lösungansätze habe,
> aber mein Problem ist ja gerade eben das ich überhaupt
> nicht mehr annährend weiß wie :D
Das ist ein klassischer Vertreter der Steckbriefaufgaben, hier einer Funktion 3. Grades, also [mm] f(x)=ax^{3}+bx^{2}+cx+d [/mm] mit noch zu bestimmenden Parametern a, b, c und d.
Leider kann ich die Skizze nicht genau erkennen.
Vermutlich hast du einen Hochpunkt bei H(1|1,2)
Dann gilt, da der Punkt auf f liegen soll f(x)=1,2.
Durch die notwendige Bedingung für Extrempunkt gilt f'(1)=0
Nun weisst du, dass der Ursprung O(0|0) auf f liegen soll, also gilt f(0)=0
Und du kennst die Steigung der Tangente y=2x im Ursprung, also hat f(x) dort ebenfalls die Steigung 2, es gilt also f'(0)=2
Aus den vier grün markierten Gleichungen kannst du die vier Parameter bestimmen, das geht am besten mit dem Gauß-Algorithmus.
Das Bild habe ich gesperrt, da es ein Teil eines Aufgabenzettels ist.
Marius
|
|
|
|