matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenFunktionsgleichung bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Steckbriefaufgaben" - Funktionsgleichung bestimmen
Funktionsgleichung bestimmen < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsgleichung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:31 So 10.02.2008
Autor: file

Aufgabe
Eine Parabel 4. Ordnung schneidet die x-Achse in P(4|0) und hat im Ursprung einen Wendepunkt mit waagerechter Tangente. Sie schließt mit der x-Achse im 1. Feld eine Fläche von 6,4 Flächeneinheiten ein. Stelle die Gleichung der Parabel auf.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:

Mein Lösungsansatz: f(4)=0; f´(0)=0; und f´´(0)=0, mir ist nicht ganz klar, wie ich Bedingungen aus dem gegebenen Flächeninhalt ziehen kann?

        
Bezug
Funktionsgleichung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 So 10.02.2008
Autor: abakus


> Eine Parabel 4. Ordnung schneidet die x-Achse in P(4|0) und
> hat im Ursprung einen Wendepunkt mit waagerechter Tangente.
> Sie schließt mit der x-Achse im 1. Feld eine Fläche von 6,4
> Flächeneinheiten ein. Stelle die Gleichung der Parabel
> auf.
>  Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  
> Mein Lösungsansatz: f(4)=0; f´(0)=0; und f´´(0)=0,

Da fehlt noch f(0)=0 (es geht ja durch den Ursprung).

Die eingeschlossene Fläche im 1. Qudranten wird mit dem bestimmten Integral berechnet.
Obere und untere Intervallgrenzen sind die Nullstellen (hier also 0 und 4).
Die allgemeine Form der Parabel ist [mm] y=ax^4+bx^3+cx^2+d*x+e, [/mm] eine Stammfunktion ist dann
[mm] F(x)=\bruch{ax^5}{5}+\bruch{bx^4}{4}+ \bruch{cx^3}{3}+ \bruch{dx^2}{2}+ex, [/mm]
und es gilt dann laut Voraussetzung F(4)-F(0)= 6,4.



> mir ist
> nicht ganz klar, wie ich Bedingungen aus dem gegebenen
> Flächeninhalt ziehen kann?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]